精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为上一点.

(1)求椭圆的方程;

(2)设分别关于两坐标轴及坐标原点的对称点,平行于的直线于异于的两点.点关于原点的对称点为.证明:直线轴围成的三角形是等腰三角形.

【答案】(1);(2)证明见解析

【解析】

试题分析:(1)因为离心率为,所以;即的方程为:,代入即可;(2)设直线的斜率为,则要证直线轴围成的三角形是等腰三角形需证由已知可得直线的斜率为,则直线的方程为:,联立直线和椭圆的方程,找到斜率,代入相应的量即可

试题解析:(1)因为离心率为,所以

从而的方程为:

代入解得:

因此

所以椭圆的方程为:

(2)由题设知的坐标分别为

因此直线的斜率为

设直线的方程为:

得:

时,不妨设

于是

分别设直线的斜率为

则要证直线轴围成的三角形是等腰三角形,

只需证

所以直线轴转成的三角形是等腰三角形

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意,给定区间,设函数表示实数所属的给定区间内唯一整数之差的绝对值.

1)当时,求出的解析式;时,写出绝对值符号表示的解析式;

2)求,判断函数的奇偶性,并证明你的结论;

3)当时,求方程的实根.(要求说明理由,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】采购经理指数(PMI)是衡量一个国家制造业的体检表,是衡量制造业在生产新订单、商品价格、存货、雇员、订单交货、新出口订单和进口等八个方面状况的指数,下图为20189—20199月我国制造业的采购经理指数(单位:%.

1)求2019年前9个月我国制造业的采购经理指数的中位数及平均数(精确到0.1);

2)从20194—20199月这6个月任意选取2个月,求这两个月至少有一个月采购经理指数与上个月相比有所回升的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,是其准线上任意一点,过点作直线与抛物线相切,为切点,轴分别交于两点.

1)求焦点的坐标,并证明直线过点

2)求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点且渐近线为,则下列结论错误的是(

A.曲线的方程为

B.左焦点到一条渐近线距离为

C.直线与曲线有两个公共点;

D.过右焦点截双曲线所得弦长为的直线只有三条;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.

(Ⅰ)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.

身高较矮

身高较高

合计

体重较轻

体重较重

合计

(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:

编号

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

体重

57

58

53

61

66

57

50

66

根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);

编号

1

2

3

4

5

6

7

8

体重(kg

57

58

53

61

66

57

50

66

残差

②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.

参考数据:

参考公式:

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】英国统计学家EH.辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如下表所示(单位:件):

法官甲

法官乙

终审结果

民事庭

行政庭

合计

终审结果

民事庭

行政庭

合计

维持

29

100

129

维持

90

20

110

推翻

3

18

21

推翻

10

5

15

合计

32

118

150

合计

100

25

125

记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,则下面说法正确的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数的单调区间;

2)若方程在区间内有解,求实数的取值范围.

查看答案和解析>>

同步练习册答案