证明:(1)若g(x)在(a,b)上是增函数,任取a<x1<x2<b,则有m<g(x1)<g(x2)<n,由f(u)在(m,n)上是减函数得f[g(x1)]>f[g(x2)],故f[g(x)]在(a,b)上是减函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是增函数.
(2) 若g(x)在(a,b)上是增函数,任取a<x1<x2<b,则有m<g(x1)<g(x2)<n,由f(u)在(m,n)上是增函数,得f[g(x1)]<f[g(x2)],所以f[g(x)]在(a,b)上是增函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是减函数.
|
科目:高中数学 来源: 题型:044
设y=f(x)是定义在区间[-1,1]上的函数,且满足条件:
(i)f(-1)=f(1)=0;
(ii)对任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判断函数g(x)=是否满足题设条件;
(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数y=f(x),且使得对任意的u,v∈[-1,1],都有|f(u)-f(v)|=|u-v|.
若存在,请举一例;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:044
设y=f(u),u∈(m,n),u=g(x),x∈(a,b).(1)若y=f(u)是(m,n)上的减函数,则y=f[g(x)]的增减性与g(x)的增减性相反;(2)若y=f(u)是(m,n)上的增函数,则y=f[g(x)]的增减性与g(x)的增减性相同.
查看答案和解析>>
科目:高中数学 来源:新课标教材全解高中数学人教A版必修1 人教A版 题型:044
设y=f(x)是定义在区间[-1,1]上的函数,且满足条件:
①f(-1)=f(1)=0;
②对任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(1)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(2)证明:对任意的u,v∈[-1,1],都有|f(u)-f(v)|≤1.
查看答案和解析>>
科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:047
设y=f(x)是定义在区间[-1,1]上的函数,且满足条件;
(i)f(-1)=f(1)=0;
(ii)对任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)证明:对任意的x∈[-1,1]都有x-1≤f(x)≤1-x;
(Ⅱ)证明:对任意的u,v∈[-1,1],都有|f(u)-f(v)|≤1;
(Ⅲ)在区间[-1,1]上是否存在满足题设条件的奇函数y=f(x),且使得
若存在,请举一例;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com