精英家教网 > 高中数学 > 题目详情

【题目】如图,在正三棱柱中,AB=2,由顶点B沿棱柱侧面经过棱到顶点C1的最短路线与棱的交点记为M,求:

(Ⅰ)三棱柱的侧面展开图的对角线长.

(Ⅱ)该最短路线的长及的值.

(Ⅲ)平面与平面ABC所成二面角(锐二面角)

【答案】;⑵,;⑶45°

【解析】

(Ⅰ)利用侧面展开法即可求出对角线长;

(Ⅱ)利用侧面展开法进行求解即可,求出DC1的值即可;

(Ⅲ)连接DB,C1B,可证∠C1BC就是平面C1MB与平面ABC所成二面角的平面角,在三角形C1BC中求出此角的大小.

(Ⅰ)正三棱柱的侧面展开图是长为6, 宽为2的矩形,

其对角线长为

(Ⅱ)如图,将侧面绕棱AA1, , 旋转120°使其与侧面在同一平面上,点B运动到点D的位置,连接DC1交AA1于M,则DC1就是由顶点B沿棱柱侧面经过棱AA1到顶点C1的最短路线,其长为

,

(Ⅲ)连接DB,C1B,则DB就是平面C1MB与平面ABC的交线,

在△DCB中,

,

,又平面

由三垂线定理得

就是平面C1MB与平面ABC所成二面角的平面角(锐角),

∵侧面是正方形,

故平面C1MB与平面ABC所成的二面角(锐角)为45°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设圆的圆心在轴上,并且过两点.

(1)求圆的方程;

(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB, = =2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则( )

A.γ<α<β
B.α<γ<β
C.α<β<γ
D.β<γ<α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
(Ⅰ)0<xn+1<xn
(Ⅱ)2xn+1﹣xn
(Ⅲ) ≤xn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=60°,c= a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,a3+b3=2,证明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

同步练习册答案