【题目】已知函数f(x)= 恰有两个零点,则a的取值范围是 .
【答案】(﹣3,0)
【解析】解:由题意,a≥0时,
x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒成立,
f(x)在(0,+∞)上至多一个零点;
x≥0,函数y=|x﹣3|+a无零点,
∴a≥0,不符合题意;
﹣3<a<0时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上无零点,符合题意;
a=﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;
a<﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;
综上所述,a的取值范围是(﹣3,0).
所以答案是(﹣3,0).
科目:高中数学 来源: 题型:
【题目】某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图。
(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;
(2)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某3D打印机,其打出的产品质量按照百分制衡量,若得分不低于85分则为合格品,低于85分则为不合格品,商家用该打印机随机打印了15件产品,得分情况如图;
(1)写出该组数据的中位数和众数,并估计该打印机打出的产品为合格品的概率;
(2)若打印一件合格品可获利54元,打印一件不合格品则亏损18元,记X为打印3件产品商家所获得的利润,在(1)的前提下,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=emx﹣lnx﹣2.
(1)若m=1,证明:存在唯一实数t∈( ,1),使得f′(t)=0;
(2)求证:存在0<m<1,使得f(x)>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某巨型摩天轮.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第35分钟时他距地面大约为( )米.
A. 75 B. 85 C. 100 D. 110
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年底某购物网站为了解会员对售后服务(包括退货、换货、维修等)的满意度,从年下半年的会员中随机调查了个会员,得到会员对售后服务的满意度评分如下:
根据会员满意度评分,将会员的满意度从低到高分为三个等级:
满意度评分 | 低于分 | 分到分 | 不低于分 |
满意度等级 | 不满意 | 比较满意 | 非常满意 |
(1)根据这个会员的评分,估算该购物网站会员对售后服务比较满意和非常满意的频率;
(2)以(1)中的频率作为概率,假设每个会员的评价结果相互独立.
(i)若从下半年的所有会员中随机选取个会员,求恰好一个评分比较满意,另一个评分非常满意的概率;
(ii)若从下半年的所有会员中随机选取个会员,记评分非常满意的会员的个数为,求的分布列,数学期望及方差.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com