精英家教网 > 高中数学 > 题目详情
20.曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.(α$为参数),M是曲线C1上的动点,且M是线段OP的中点,P点的轨迹为曲线C2,直线l的极坐标方程为$ρsin({x+\frac{π}{4}})=\sqrt{2}$,直线l与曲线C2交于A,B两点.
(1)求曲线C2的普通方程;
(2)求线段 AB的长.

分析 (1)设P(x,y),则由条件知$M({\frac{x}{2},\frac{y}{2}})$,由M点在曲线C1上,可得$\left\{\begin{array}{l}\frac{x}{2}=2cosα\\ \frac{y}{2}=2+2sinα\end{array}\right.$,利用平方关系化为普通方程即为曲线C2的普通方程.
(2)直线l的方程为$ρsin({x+\frac{π}{4}})=\sqrt{2}$,化为直角坐标方程,利用点到直线的距离公式可得圆心到直线的距离公式,利用弦长公式可得:|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$即可得出.

解答 解:(1)设P(x,y),则由条件知$M({\frac{x}{2},\frac{y}{2}})$,
∵M点在曲线C1上,∴$\left\{\begin{array}{l}\frac{x}{2}=2cosα\\ \frac{y}{2}=2+2sinα\end{array}\right.$,即$\left\{\begin{array}{l}x=4cosα\\ y=4+4sinα\end{array}\right.$,
化为普通方程为x2+(y-4)2=16,即为曲线C2的普通方程.
(2)直线l的方程为$ρsin({x+\frac{π}{4}})=\sqrt{2}$,化为直角坐标方程为x+y-2=0.
由(1)知曲线C2是圆心为(0,4),半径为4的圆,
∵圆C2的圆心到直线l的距离$d=\frac{{|{4-2}|}}{{\sqrt{2}}}=\sqrt{2}$,∴$|{AB}|=2\sqrt{{r^2}-{d^2}}=2\sqrt{14}$.

点评 本题考查了参数方程的应用、极坐标方程化为直角坐标方程、点到直线的距离公式、直线与圆相交弦长公式、坐标变换,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=log0.5(x-1)x∈[3,5],
(1)设g(x)=f-1(x),求g(x)的解析式;
(2)是否存在实数m,使得关于x的不等式2xg(2x)-mg(x)+1≤0有解?若存在,求m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.方程log3x+x-3=0的解所在区间是(k,k+1)(k∈Z),则k=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数$f(x)=\sqrt{1+{{log}_2}x}$的定义域为[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系中,若两点P、Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q两点关于直线y=x对称,则称点对{P,Q}是函数y=f(x)的一对“和谐点对”(注:点对{P,Q}与{Q,P}看做同一对“和谐点对”).函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x+2(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,则此函数的“和谐点对”有2对.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.命题“若实数a,b满足2a+b>5,则a=2且b=3”的否命题是真命题(填“真”或“假”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=sin(-\frac{x}{2}-\frac{π}{6})$的单调递增区间是(  )
A.[2kπ+$\frac{2}{3}$π,2kπ+$\frac{8}{3}$π](k∈Z)B.[4kπ+$\frac{2}{3}$π,4kπ+$\frac{8}{3}$π](k∈Z)
C.[2kπ-$\frac{4}{3}$π,2kπ+$\frac{2}{3}$π](k∈Z)D.[4kπ-$\frac{4}{3}$π,4kπ+$\frac{2}{3}$π](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.原命题:“设复数z=a+bi(i为虚数单位),若z为纯虚数,则a=0”的逆命题、否命题、逆否命题中真命题共有1个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)={log_a}\frac{x-2}{x+2}$(a>0且a≠1)
(1)求f(x)的定义域并判定f(x)的奇偶性;
(2)当a>1时,判定f(x)的单调性并用定义法证明;
(3)是否存在实数a,使得f(x)的定义域为[m,n]时,值域为[1+logan,1+logam]?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案