精英家教网 > 高中数学 > 题目详情
14.已知f(3x)=xlg9,则f(2)+f(5)=2.

分析 设3x=t,则x=log3t,从而f(3x)=f(t)=log3t•lg9,由此利用对数性质、运算法则能求出f(2)+f(5)的值.

解答 解:∵f(3x)=xlg9,
设3x=t,则x=log3t,
∴f(3x)=f(t)=log3t•lg9,
∴f(2)+f(5)=log32•lg9+log35•lg9=(log32+log35)lg9
=log310•lg9=$\frac{lg10}{lg3}•lg9$=$\frac{1}{lg3}•2lg3$=2.
故答案为:2.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意换元法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.某班级共49人,在必修1的学分考试中,有7人没通过,若用A表示参加补考这一事件,则下列关于事件A的说法正确的是(  )
A.概率为$\frac{1}{7}$B.频率为$\frac{1}{7}$C.频率为7D.概率接近$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{cos2θ}{sin(θ+\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则log${\;}_{\sqrt{2}}$(sinθ-cosθ)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\frac{{2-m•{2^x}}}{2^x}$,函数$g(x)={log_a}({x^2}+x+2)$(a>0且a≠1)在$[{-\frac{1}{3}\;,\;1}]$上的最大值为2,若对任意的x1∈[-1,2],存在x2∈[0,3],使得f(x1)≥g(x2),则实数m的取值范围是(  )
A.$({-∞\;,\;-\frac{2}{3}}]$B.$[{\frac{2}{3}\;,\;+∞})$C.$({-∞\;,\;-\frac{1}{2}}]$D.$({-∞\;,\;\frac{1}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\frac{2}{4^x}-x$,设a=0,b=log0.42,c=log43,则有(  )
A.f(a)<f(c)<f(b)B.f(c)<f(b)<f(a)C.f(a)<f(b)<f(c)D.f(b)<f(c)<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各式比较大小正确的是(  )
A.1.72.5>1.73B.0.6-1>0.62C.1.70.3<0.93.1D.0.8-0.1>1.250.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.${({\frac{2+2i}{1-i}})^3}$=(  )
A.8B.-8C.8iD.-8i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$z=\frac{2i}{2-i}$(i为虚数单位)所对应的点位于复平面内(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{3}$ax3+ax2+x+2存在单调递减区间,则a的取值范围是(-∞,0)∪(1,+∞).

查看答案和解析>>

同步练习册答案