精英家教网 > 高中数学 > 题目详情
命题p:函数y=|x-2|在[3,+∞)为增函数,命题q:设集合A=R,B=N*,对应法则f:x→y=x2是从集合A到集合B的函数,下列判断正确的是( )
A.p∧q是真
B.p∨q是假
C.¬p是真
D.¬q是真
【答案】分析:由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项
解答:解:由于函数y=|x-2|在[3,+∞)为增函数,故命题P是真命题;
设集合A=R,B=N*,对应法则f:x→y=x2,由于x=时,y=∉B,故其不是从集合A到集合B的函数,故q是假命题
由此结合复合命题的判断规则知:¬p是假,¬q为真命题,p∧q为假命题,p∨q为是真命题.
考查四个选项,D选项正确,
故选D.
点评:本题考查复合命题的真假判断,解题的关键是正确判断所涉及命题的真假及熟练掌握复合命题的真假判断规则,本题属于高考常考题型也是对命题考查的常规题型,知识性强,难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题p:函数y=|x-2|在[3,+∞)为增函数,命题q:设集合A=R,B=N*,对应法则f:x→y=x2是从集合A到集合B的函数,下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:“函数y=
x+mx+1
在(-1,+∞)上单调递增.”命题Q:“幂函数y=xm2-2m-3在(0,+∞)上单调递减”.
(1)若命题P和命题Q同时为真,求实数m的取值范围;
(2)若命题P和命题Q有且只有一个真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题p:函数y=|x-2|在[3,+∞)为增函数,命题q:设集合A=R,B=N*,对应法则f:x→y=x2是从集合A到集合B的函数,下列判断正确的是(  )
A.p∧q是真B.p∨q是假C.¬p是真D.¬q是真

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题P:“函数y=
x+m
x+1
在(-1,+∞)上单调递增.”命题Q:“幂函数y=xm2-2m-3在(0,+∞)上单调递减”.
(1)若命题P和命题Q同时为真,求实数m的取值范围;
(2)若命题P和命题Q有且只有一个真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案