【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是( )
A.
B.
C.
D.
【答案】B
【解析】解:如图,球面与正方体的表面都相交,
根据选项的特点,我们考虑三个特殊情形:①当x=1;②当x= ;③当x= .
①当x=1时,以A为球心,1为半径作一个球,该球面与正方体表面的交线分别是图中的红色的弧线,其弧长为:3× ×2π×1= ,且为函数f(x)的最大值;
②当x= 时,以A为球心, 为半径作一个球,该球面与正方体表面的交线分别是图中的兰色的弧线,根据图形的相似,其弧长为①中弧长的一半;
③当x= .以A为球心, 为半径作一个球,该球面与正方体表面的交线分别是图中的粉红色的弧线,其弧长为:3× ×2π×1= ,且为函数f(x)的最大值;
对照选项,B正确.
故选B.
【考点精析】认真审题,首先需要了解棱柱的结构特征(两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形).
科目:高中数学 来源: 题型:
【题目】某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 45 | 75 | 90 | 60 | 30 |
(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=x2+ex﹣ (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )
A.(﹣ )
B.( )
C.( )
D.( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:
分组 | 频数 | 频率 |
合计 |
(1)求的值和实验班数学平均分的估计值;
(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求f(2),f(x);
(2)证明:函数f(x)在[1,17]上为增函数;
(3)试求函数f(x)在[1,17]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(xR),g(x)=2a-1
(1)求函数f(x)的单调区间与极值.
(2)若f(x)≥g(x)对恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com