精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是(

A.
B.
C.
D.

【答案】B
【解析】解:如图,球面与正方体的表面都相交,
根据选项的特点,我们考虑三个特殊情形:①当x=1;②当x= ;③当x=
①当x=1时,以A为球心,1为半径作一个球,该球面与正方体表面的交线分别是图中的红色的弧线,其弧长为:3× ×2π×1= ,且为函数f(x)的最大值;
②当x= 时,以A为球心, 为半径作一个球,该球面与正方体表面的交线分别是图中的兰色的弧线,根据图形的相似,其弧长为①中弧长的一半;
③当x= .以A为球心, 为半径作一个球,该球面与正方体表面的交线分别是图中的粉红色的弧线,其弧长为:3× ×2π×1= ,且为函数f(x)的最大值;
对照选项,B正确.
故选B.

【考点精析】认真审题,首先需要了解棱柱的结构特征(两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

女性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

20

40

80

50

10

男性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

45

75

90

60

30

(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:

分组

频数

频率

合计

(1)求的值和实验班数学平均分的估计值;

(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

(1)判断函数的奇偶性

(2) 判断函数(1,+)上的单调性,并用定义证明你的结论;

(3)求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求f(2),f(x);

(2)证明:函数f(x)在[1,17]上为增函数;

(3)试求函数f(x)在[1,17]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=xR),gx=2a-1

1)求函数fx的单调区间与极值

2)若fx≥gx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用空间向量解决下列问题:如图,在斜三棱柱中, 的中点, ⊥平面

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式x2﹣2ax+a+2≤0的解集为M,若M[1,4],求实数a的范围.

查看答案和解析>>

同步练习册答案