精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求函数的单调区间;

2)若不等式对任意的正实数都成立,求实数的最大整数值.

3)当时,若存在实数,使得,求证.

【答案】1)增区间,减区间;(22;(3)见解析

【解析】

(1)由,得,再求出函数的导函数,得到单调递减区间,得到单调递增区间;

2)依题意得,所以,令,利用导数说明其单调性,由,即存在使,且,所以,从而得到的取值范围;

3,解得,由题意知,即可得到函数的单调区间,即可得到,同理,从而得解;

解:(1)当时,,令

时,单调递减,即的单调递减区间为

时,单调递增,即的单调递增区间为.

2)依题意得

所以

显然上单调递增,

,∴存在使

且当时,单调递减;当时,单调递增.

,∴的最大整数值为2.

3,解得,由题意知

时,单调递减;当时,单调递增,

上单减,在上单增,且

∴当时,,由,可得

,∴,同理

,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为:.

1)求直线和曲线的直角坐标方程;

2,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市举办酬宾活动,单次购物超过元的顾客可参与一次抽奖活动,活动规则如下:盒子中装有大小和形状完全相同的个小球,其中个红球、个白球和个黑球,从中不放回地随机抽取个球,每个球被抽到的机会均等.每抽到个红球记分,每抽到个白球记分,每抽到个黑球记.如果抽取个球总得分分可获得元现金,总得分低于分没有现金,其余得分可获得元现金.

1)设抽取个球总得分为随机变量,求随机变量的分布列;

2)设每位顾客一次抽奖获得现金元,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线的左、右焦点为右支上的动点(非顶点),的内心.变化时,的轨迹为(

A.直线的一部分B.椭圆的一部分

C.双曲线的一部分D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面坐标系中中,已知直线l的参考方程为t为参数),曲线C的参数方程为s为参数).P为曲线C上的动点,

(Ⅰ)求直线l和曲线C的直角坐标方程;

(Ⅱ)求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,,平面平面是线段的中点,.

1)证明:平面.

2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国数学家莱布尼兹(1646年-1716)1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家天文学家明安图(1692年-1765)为提高我国的数学研究水平,从乾隆初年(1736)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】最新研究发现,花太多时间玩手机游戏的儿童,患多动症的风险会加倍.青少年的大脑会很快习惯闪烁的屏幕、变幻莫测的手机游戏,一旦如此,他们在教室等视觉刺激较少的地方,就很难集中注意力.研究人员对110名年龄在7岁到8岁的儿童随机调查,并在孩子父母的帮助下记录了他们在1个月里玩手机游戏的习惯.同时,教师记下这些孩子出现的注意力不集中问题.统计得到下列数据:

注意力不集中

注意力集中

总计

不玩手机游戏

20

40

60

玩手机游戏

30

20

50

总计

50

60

110

1)试估计7岁到8岁不玩手机游戏的儿童中注意力集中的概率;

2)能否在犯错误的概率不超过0.010的前提下认为玩手机游戏与注意力集中有关系?

附表:

td style="width:27.75pt; border-top-style:solid; border-top-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.62pt; vertical-align:middle">

10.828

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.840

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为  

A. B. C. D.

查看答案和解析>>

同步练习册答案