2£®Èçͼ£¬Ò»Â¥·¿¸ßABΪ19$\sqrt{3}$Ã×£¬Ä³¹ã¸æ¹«Ë¾ÔÚÂ¥¶¥°²×°Ò»¿é¿íBCΪ4Ã׵Ĺã¸æÅÆ£¬CDΪÀ­¸Ë£¬¹ã¸æÅƵÄÇã½ÇΪ60¡ã£¬°²×°¹ý³ÌÖУ¬Ò»Éí¸ßΪ$\sqrt{3}$Ã׵ļàÀíÈËÔ±EFÕ¾ÔÚ¥ǰ¹Û²ì¸Ã¹ã´«ÅƵİ²×°Ð§¹û£ºÎª±£Ö¤°²È«£¬¸Ã¼àÀíÈËÔ±²»µÃÕ¾ÔÚ¹ã¸æÅƵÄÕýÏ·½£ºÉèAE=xÃ×£¬¸Ã¼àÀíÈËÔ±¹Û²ì¹ã¸æÅƵÄÊӽǡÏBFC=¦È£®
£¨1£©ÊÔ½«tan¦È±íʾΪxµÄº¯Êý£»
£¨2£©ÇóµãEµÄλÖã¬Ê¹¦ÈÈ¡µÃ×î´óÖµ£®

·ÖÎö £¨1£©Í¨¹ý×÷CG¡ÍAEÓÚG£¬ÔòFH¡ÍABÓÚH£¬½»CGÓÚM£¬×÷BN¡ÍCGÓÚN£¬Ôò¦È=¡ÏCFM-¡ÏBFH£¬ÀûÓÃÈñ½ÇµÄÕýÇеĶ¨Òå¿ÉÖªÔÚRt¡÷CFMÖÐtan¡ÏCFM=$\frac{20\sqrt{3}}{x-2}$¡¢ÔÚRt¡÷BFHÖÐtan¡ÏBFH=$\frac{18\sqrt{3}}{x}$£¬ÀûÓòî½ÇµÄÕýÇй«Ê½¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ý£¨1£©¿ÉÖª£¬tan¦È=$2\sqrt{3}$•$\frac{x+18}{{x}^{2}-2x+1080}$£¬Í¨¹ýÁît=x+18£¬»»Ôª¼ÆËã¿ÉÖªtan¦È=$\frac{2\sqrt{3}}{t+\frac{1440}{t}-38}$£¬½ø¶øÀûÓûù±¾²»µÈʽ¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©×÷CG¡ÍAEÓÚG£¬ÔòFH¡ÍABÓÚH£¬½»CGÓÚM£¬
×÷BN¡ÍCGÓÚN£¬Ôò¦È=¡ÏCFM-¡ÏBFH£¬
ÔÚRt¡÷BCNÖУ¬BC=4£¬¡ÏCBN=60¡ã£¬ÔòBN=2£¬CN=2$\sqrt{3}$£¬
ÔÚRt¡÷CFMÖУ¬ÓÐtan¡ÏCFM=$\frac{CM}{MF}$=$\frac{CN+NM}{AE-BN}$=$\frac{20\sqrt{3}}{x-2}$£»
ÔÚRt¡÷BFHÖУ¬ÓÐtan¡ÏBFH=$\frac{BH}{HF}$=$\frac{18\sqrt{3}}{x}$£»
¡àtan¦È=tan£¨¡ÏCFM-BFH£©=$\frac{tan¡ÏCFM-tan¡ÏBFH}{1+tan¡ÏCFM•tan¡ÏBFH}$
=$\frac{\frac{20\sqrt{3}}{x-2}-\frac{18\sqrt{3}}{x}}{1+\frac{20\sqrt{3}}{x-2}•\frac{18\sqrt{3}}{x}}$=$\frac{2\sqrt{3}x+36\sqrt{3}}{{x}^{2}-2x+1080}$£¬
ÒÀÌâÒ⣬¼àÀíÈËÔ±Ö»ÄÜÔÚGµãÓҲ࣬¼´x¡Ê£¨2£¬+¡Þ£©£» 
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬tan¦È=$\frac{2\sqrt{3}x+36\sqrt{3}}{{x}^{2}-2x+1080}$=$2\sqrt{3}$•$\frac{x+18}{{x}^{2}-2x+1080}$£¬
Áît=x+18£¬Ôòt¡Ê£¨20£¬+¡Þ£©£¬
¹Êtan¦È=$2\sqrt{3}$•$\frac{t}{£¨t-18£©^{2}-2£¨t-18£©+1080}$=$\frac{2\sqrt{3}}{t+\frac{1440}{t}-38}$¡Ü$\frac{\sqrt{3}}{12\sqrt{10}-19}$£¬
µ±ÇÒ½öµ±t=$\frac{1440}{t}$¼´t=$12\sqrt{10}$ʱȡµÈºÅ£¬´Ëʱ£¬x=$12\sqrt{10}$-18£¬
Ó֡ߦÈΪÈñ½Ç£¬y=tan¦ÈÔÚÇø¼ä£¨0£¬$\frac{¦Ð}{2}$£©Éϵ¥µ÷µÝÔö£¬
¡àµ±x=$12\sqrt{10}$-18ʱ£¬¦ÈÈ¡µÃ×î´óÖµ£®

µãÆÀ ±¾Ì⿼²éÊÇÒ»µÀ¹ØÓÚº¯ÊýµÄ×ÛºÏÓ¦ÓÃÌ⣬¿¼²é·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª¼¯ºÏA={a-2£¬12£¬2a2+5a}£¬ÇÒ-3¡ÊA£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚ¡÷ABCÖУ¬¡ÏA=90¡ã£¬$\overrightarrow{AB}$=£¨k£¬1£©£¬$\overrightarrow{AC}$=£¨2£¬3£©£¬ÔòkµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®-$\frac{2}{3}$C£®$\frac{3}{2}$D£®-$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬a1=35£¬d=-2£¬Sn=0£¬Ôòn=36£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªf£¨x£©=sin£¨¦Øx+¦Õ£©+cos£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0£¼|¦Õ|£¼$\frac{¦Ð}{2}$£©£¬f£¨0£©=0£¬ÇÒº¯Êýf£¨x£©Í¼ÏóÉϵÄÈÎÒâÁ½Ìõ¶Ô³ÆÖáÖ®¼ä¾àÀëµÄ×îСֵÊÇ$\frac{¦Ð}{2}$£®
£¨1£©Çóf£¨$\frac{¦Ð}{8}$£©µÄÖµ£»
£¨2£©½«º¯Êýy=f£¨x£©µÄͼÏóÏòÓÒƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»ºó£¬µÃµ½º¯Êýy=g£¨x£©µÄͼÏó£¬Çóº¯Êýg£¨x£©µÄ½âÎöʽ£¬²¢Çóg£¨x£©ÔÚx¡Ê[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Éèa=log50.4£¬b=2-0.2£¬c=log45£¬Ôòa£¬b£¬cµÄ´óС¹ØϵÊÇa£¼b£¼c£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªx¡¢yÂú×ãy=3-$\sqrt{4x-{x}^{2}}$£¬Ôòʹx+2y+2a£¼0ºã³ÉÁ¢µÄaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\sqrt{5}-4$£¬$\sqrt{5}+4$]B£®£¨-¡Þ£¬-5]C£®[-5£¬+¡Þ£©D£®£¨-¡Þ£¬-5£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚµ¥Î»Ô²ÉÏÓÐÁ½¸ö¶¯µãP£¬Q£¬ËüÃÇͬʱ´ÓµãA£¨1£¬0£©³ö·¢ÑØÔ²ÖÜÔ˶¯£¬ÒÑÖªµãP°´ÄæʱÕë·½ÏòÿÃëת$\frac{¦Ð}{3}$£¬µãQ°´Ë³Ê±Õë·½ÏòÿÃëת$\frac{¦Ð}{6}$£¬ÊÔÇóËüÃÇ´Ó³ö·¢ºóµ½µÚÎå´ÎÏàÓöʱ¸÷×Ô×ß¹ýµÄ»¡³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÈôÅ×ÎïÏßy=2x2ÉÏÁ½µãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©¹ØÓÚÖ±Ïßy=x+$\frac{3}{2}$¶Ô³Æ£¬Ôòx1•x2=£¨¡¡¡¡£©
A£®$\frac{5}{2}$B£®2C£®-$\frac{1}{2}$D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸