精英家教网 > 高中数学 > 题目详情
19.已知命题P:函数y=lg(ax2+2x+1)的定义域为R;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若P∨Q是真命题,P∧Q是假命题;求实数a的取值范围.

分析 若P∨Q是真命题,P∧Q是假命题;则命题是P,Q一真一假,进而可得答案.

解答 解:当P为真时:ax2+2x+1>0恒成立,
即△=4-4a<0且a>0,
解得:a>1,
当Q为真时:
a-2=0,或$\left\{\begin{array}{l}a-2<0\\△=4({a-2)}^{2}+16(a-2)<0\end{array}\right.$,
解得:-2<a≤2,
∵P∨Q是真命题,P∧Q是假命题;
故命题是P,Q一真一假,
若P真Q假,则a>2,
若P假Q真,则-2<a≤1,
综上可得:实数a的取值范围为(-2,1]∪(2,+∞).

点评 本题以命题的真假判断与应用为载体,考查了函数恒成立问题,复合命题,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求不等式log3(2x+7)>log3(4x-1)中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2x3+3x2+a,其中a∈R.
(1)求函数f(x)的单调区间;
(2)若函数f(x)的图象与直线y=12x相切,求a的值;
(3)是否存在相异的正实数m,n,使得f(m)=12m,f(n)=12n?若存在,试确定实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知角α的终边经过点(-4,-3),那么tanα等于(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若正数x,y满足2x+y-3=0,则$\frac{2}{x}$+$\frac{1}{y}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线x+2ay-1=0与直线x-4y=0平行,则a的值为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列命题:①零向量没有方向;②若两个空间向量相等,则它们的起点相同,终点也相同;③若空间向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;④若空间向量$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{p}$满足$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$;⑤空间中任意两个单位向量必相等.其中正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}\right.$,给出下列命题:
①F(x)=|f(x);   
②函数F(x)是偶函数;
③当a<0时,若0<m<n<1,则有F(m)-F(n)<0成立;
④当a>0时,函数y=F(x)-2有4个零点.
其中正确命题的序号为②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是(  )
A.至少有一个白球;至少有一个红球B.至少有一个白球;红、黑球各一个
C.恰有一个白球;一个白球一个黑球D.至少有一个白球;都是白球

查看答案和解析>>

同步练习册答案