精英家教网 > 高中数学 > 题目详情
1.给出5名同学的数学成绩和物理成绩,计算其数学成绩和物理成绩的相关系数γ,γ=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,判断其关系为有很强的正相关关系..
 序号 数学物理 
 A 60 50
 B 70 40
 C 80 70
 D 90 80
 E 100 80

分析 分别令:x1=60,x2=70,x3=80,x4=90,x5=100.y1=50,y2=40,y3=70,y4=80,y5=80.可得$\overline{x}$=80,$\overline{y}$=64.分别计算:$\sum_{i=1}^{5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$,$\sum_{i=1}^{5}({x}_{i}-\overline{x})^{2}$,$\sum_{i=1}^{5}$$({y}_{i}-\overline{y})^{2}$,代入相关系数计算公式可得r,进而判断出结论.

解答 解:分别令:x1=60,x2=70,x3=80,x4=90,x5=100.y1=50,y2=40,y3=70,y4=80,y5=80.
可得$\overline{x}$=$\frac{60+70+80+90+100}{5}$=80,$\overline{y}$=$\frac{50+40+70+80+80}{5}$=64.
$\sum_{i=1}^{5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=-20×(-14)+(-10)×(-24)+0+10×16+20×16=1000.
$\sum_{i=1}^{5}({x}_{i}-\overline{x})^{2}$=(-20)2+102+0+102+202=1000,$\sum_{i=1}^{5}$$({y}_{i}-\overline{y})^{2}$=142+242+62+162+162=1000.
∴r=$\frac{1000}{\sqrt{1000×1000}}$=1.
∴其数学成绩和物理成绩的相关关系为:有很强的正相关关系.
故答案为:有很强的正相关关系.

点评 本题考查了相关系数计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.由函数y=sin(5x+$\frac{π}{6}$)的图象得到y=sinx的图象,下列操作正确的是(  )
A.将y=sin(5x+$\frac{π}{6}$)的图象向右平移$\frac{π}{30}$;再将所有点的横坐标伸长为原来的5倍,纵坐标不变
B.将y=sin(5x+$\frac{π}{6}$)的图象向左平移$\frac{π}{30}$;再将所有点的横坐标伸长为原来的5倍,纵坐标不变
C.将y=sin(5x+$\frac{π}{6}$)的图象向右平移$\frac{π}{30}$;再将所有点的横坐标缩短为原来的$\frac{1}{5}$倍,纵坐标不变
D.将y=sin(5x+$\frac{π}{6}$)的图象向左平移$\frac{π}{30}$;再将所有点的横坐标缩短为原来的$\frac{1}{5}$倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}^{2}+3{a}_{n}+1}{{a}_{n}+2}$(n∈N*).
(Ⅰ)求证:$\frac{2n+1}{3}$≤an≤n;
(Ⅱ)设数列{an}的前n项和为Sn,当n≥5时,求证:Sn≥$\frac{1}{3}$n2+$\frac{4}{5}$n-$\frac{8}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖的方盒,当x等于$\frac{a}{6}$时,方盒的容积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.向量|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥($\overrightarrow{b}$-2$\overrightarrow{a}$),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的数量积等于(  )
A.-1B.-$\frac{10}{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.30°角所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(cosx,1),x∈R.
(1)当x=$\frac{π}{4}$时,求$\overrightarrow a•\overrightarrow b$的值;
(2)求函数f(x)=|$\overrightarrow{a}$+$\overrightarrow{b}$|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,如果b2+c2-a2-bc=0,那么角A的值为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4.
(I)求证:平面PBD⊥平面ABCD;
(II)求直线CB与平面PDC所成角的正弦值.

查看答案和解析>>

同步练习册答案