精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边长分别为a,b,c,且cos2B﹣cos2A=2sinC(sinA﹣sinC).
(1)求角B的大小;
(2)若 ,求2a+c的取值范围.

【答案】
(1)解:由cos2B﹣cos2A=2sinC(sinA﹣sinC),可得sin2A+sin2B﹣sin2C=sinAsinC.

根据正弦定理得a2+c2﹣b2=ac,

由余弦定理,得 ,∵0<B<π,∴


(2)解:由(1)得:2R=

2a+c=2R(2sinA+sinC)=2[2sinA+sin( )]=5sinA+ cosA=2 sin(A+φ)

其中,sinφ= ,cosφ=

∵A ),∴

∴当 时,

时,

当A+φ=φ时, .所以2 sin(A+φ)∈( ,2 ].


【解析】(1)由已知可得sin2A+sin2B﹣sin2C=sinAsinC.即a2+c2﹣b2=ac, ,可得 .(2)2a+c=2R(2sinA+sinC)=5sinA+ cosA=2 sin(A+φ)其中,sinφ= ,cosφ= ,得2 sin(A+φ)∈( ,2 ].即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲乙两人各有个材质、大小、形状完全相同的小球,甲的小球上面标有五个数字,乙的小球上面标有五个数字.把各自的小球放入两个不透明的口袋中,两人同时从各自的口袋中随机摸出个小球.规定:若甲摸出的小球上的数字是乙摸出的小球上的数字的整数倍,则甲获胜,否则乙获胜.

(1)写出基本事件空间

(2)你认为规定对甲、乙二人公平吗?说出你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=e2x+ln(x+a).
(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年3月14日,“共享单车”终于来到芜湖,共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的名市民,并根据这名市民对该项目满意程度的评分(满分分),绘制了如下频率分布直方图:

(I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于分的市民中随机抽取人进行座谈,求这人评分恰好都在的概率;

(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.

(注:满意指数=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的右焦点为,右顶点为,已知,其中 为原点, 为椭圆的离心率.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300mm的为“长纤维”,其余为“短纤维”)

纤维长度

(0,100)

[100,200)

[200,300)

[300,400)

[400,500]

甲地(根数)

3

4

4

5

4

乙地(根数)

1

1

2

10

6


(1)由以上统计数据,填写下面2×2列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.

甲地

乙地

总计

长纤维

短纤维

总计

附:(1) ;(2)临界值表;

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828


(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市医疗保险实行定点医疗制度,按照“就近就医、方便管理” 的原则,规定参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有三家社区医院,并且他们的选择是等可能的、相互独立的.

(1)求甲、乙两人都选择社区医院的概率;

(2)求甲、乙两人不选择同一家社区医院的概率;

(3)设在4名参加保险人员中选择社区医院的人数为,求的分布列和数学期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过动点P作圆:(x﹣3)2+(y﹣4)2=1的切线PQ,其中Q为切点,若|PQ|=|PO|(O为坐标原点),则|PQ|的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=pe﹣x+x+1(p∈R). (Ⅰ)当实数p=e时,求曲线y=f(x)在点x=1处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当p=1时,若直线y=mx+1与曲线y=f(x)没有公共点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案