【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.
(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,a3+a4=12,公差d=2,记数列{a2n﹣1}的前n项和为Sn .
(1)求Sn;
(2)设数列{ }的前n项和为Tn , 若a2 , a5 , am成等比数列,求Tm .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的奇函数f(x),当x≥0时,f(x)=log3(x+1).若关于x的不等式f[x2+a(a+2)]≤f(2ax+2x)的解集为A,函数f(x)在[-8,8]上的值域为B,若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在R上的函数f(x)满足f(x+2)=-f(x),且 ,则函数g(x)=lg x的图象与函数f(x)的图象的交点个数为( )
A.3
B.5
C.9
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非零平面向量 , ,则“| |=| |+| |”是“存在非零实数λ,使 =λ ”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现从甲、乙两个品牌共9个不同的空气净化器中选出3个分别测试A、B、C三项指标,若取出的3个空气净化器中既有甲品牌又有乙品牌的概率为 ,那么9个空气净化器中甲、乙品牌个数分布可能是( )
A.甲品牌1个,乙品牌8个
B.甲品牌2个,乙品牌7个
C.甲品牌3个,乙品牌6个
D.甲品牌4个,乙品牌5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,其中 为自然对数的底数.
(1)若函数 在区间 上是单调函数,试求实数 的取值范围;
(2)已知函数 ,且 ,若函数 在区间 上恰有3个零点,求实数 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com