精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥中,底面为直角梯形, 平面,侧面是等腰直角三角形, ,点是棱的中点.

(1)证明:平面平面

(2)求锐二面角的余弦值.

【答案】(1)见解析(2)

【解析】

试题分析:1AC的中点F,连接BF,可证平面ACD,又可证四边形BFME是平行四边形.可得 EM//BF,可证平面ACD,从而平面平面2)利用空间直角坐标进行向量运算,根据法向量夹角即可求出.

试题解析:

(1)证明:取AC的中点F,连接BF

因为ABBC所以 平面ABC,所以CD .

所以平面ACD.①

因为AM=MDAF=CF,所以.

因为 所以//MF

所以四边形BFME是平行四边形.所以EM//BF.②

由①②,得平面ACD,所以平面平面

(2)解: BE平面ABC

以点B为原点,直线BCBABE分别为x,y,z轴,

建立空间直角坐标系B-xyz.

,得B(0,0,0)C(2,0,0)A(0,2,0)D(2,0,2).

由中点坐标公式得 ,

设向量为平面BMC的一个法向量,则

y=1,x=0z=1,即,

由(I)知, 是平面ACD的一个法向量.

设二面角B-CM-A的平面角为

又二面角B-CM-A为锐二面角,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率,且椭圆经过点,过椭圆的左焦点且不与坐标轴垂直的直线交椭圆两点.

1)求椭圆的方程;

2)设线段的垂直平分线与轴交于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

已知函数(x)=|2x-a|+ |x -1|.

(Ⅰ)当a=3时,求不等式(x)≥2的解集;

(Ⅱ)若(x)≥5-x对恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线yx+ln x在点(1,1)处的切线与曲线yax2+(a+2)x+1相切,则a________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}(nN*),首项a13,前n项和为Sn,且S3a3S5a5S4a4成等差数列.

1)求数列{an}的通项公式;

2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn[ab],求ba的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题恒成立;命题方程表示双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与梯形所在的平面互相垂直, , ,点是线段的中点.

(1)求证:

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以为组距分成组: ,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

B餐厅分数频数分布表

分数区间

频数

定义学生对餐厅评价的“满意度指数”如下:

分数

满意度指数

(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为的人数;

(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;

(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时都取得极值.(1)求的值;(2)若对 恒成立,求的取值范围

查看答案和解析>>

同步练习册答案