分析 (1)若k=0,则数列{an}满足2an+1=an+an+2(n∈N*,k∈R),则数列{an}是等差数列,利用等差数列的前n项和公式即可得出.
(2)2an+1=an+an+2+k(n∈N*,k∈R),a3+a5=-4,a4=-1,可得2a4=a3+a5+k,k=2.数列{an}满足2an+1=an+an+2+2,利用递推关系可得:2(an+1-an)=(an-an-1)+(an+2-an+1),令bn=an+1-an,则2bn=bn-1+bn+1.数列{bn}是等差数列,即可得出.
解答 解:(1)若k=0,则数列{an}满足2an+1=an+an+2(n∈N*,k∈R),
∴数列{an}是等差数列,设公差为d,
∵a1=2,a3+a5=-4.
∴2×2+6d=-4,解得d=$-\frac{4}{3}$.
∴Sn=2n$-\frac{4}{3}$×$\frac{n(n-1)}{2}$=$\frac{-2{n}^{2}+8n}{3}$.
(2)2an+1=an+an+2+k(n∈N*,k∈R),a3+a5=-4,a4=-1,
则2a4=a3+a5+k,
-2=-4+k,
解得k=2.
数列{an}满足2an+1=an+an+2+2,
当n≥2时,2an=an-1+an+1+2,
相减可得:2(an+1-an)=(an-an-1)+(an+2-an+1),
令bn=an+1-an,
则2bn=bn-1+bn+1.
∴数列{bn}是等差数列,公差=b4-b3=(a5-a4)-(a4-a3)=-2.
首项为b1=a2-a1,b2=a3-a2,b3=a4-a3,
由2b2=b1+b3,可得2(a3-a2)=a2-2-1-a3,
解得3(a3-a2)=-3,b2=a3-a2=-1.
∴bn=b2+(n-2)(-2)=-2n+3.
∴an+1-an=-2n+3.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=[-2(n-1)+3]+[-2(n-2)+3]+…+(-2+3)+2
=$\frac{(n-1)(1+5-2n)}{2}$+2
=-n2+4n-1.
点评 本题考查了等差数列的通项公式及其前n项和公式、“累加求和”方法、递推关系的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a=1,b=2,c=3 | B. | b=c=1,∠B=45° | C. | a=1,b=2,∠A=100° | D. | a=1,b=$\sqrt{2},∠A={30°}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com