精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人的各科成绩如图中的茎叶图所示,则下列说法不正确的是(  )

A. 甲、乙两人的各科平均分相同

B. 甲各科成绩的中位数是83,乙各科成绩的中位数是85

C. 甲各科成绩比乙各科成绩稳定

D. 甲各科成绩的众数是89,乙各科成绩的众数为87

【答案】D

【解析】

本题考查统计分析,茎叶图,特征数:平均数,中位数,众数,方差.

根据茎叶图计算

;甲、乙两人的各科平均分相同;A正确;

甲的成绩按从小到大顺序排第5个是83,乙的成绩按从小到大顺序排第5个是85;所以甲的中位数是83,乙的中位数是85 B正确;

,甲各科成绩比乙各科成绩稳定;C正确;

在统计数据中出现次数最多的数数众数;甲的众数是83,乙的众数为98D错误;

故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 的中点, 的中点,且为正三角形.

)求证: 平面

)若 ,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点分别是Δ的边的中点连接.现将沿折叠至Δ的位置,连接.记平面 与平面 的交线为 ,二面角大小为.

(1)证明:

(2)证明:

(3)求平面与平面 所成锐二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形AMNC为等腰梯形,△ABC为直角三角形,平面AMNC与平面ABC垂直,AB=BC,AM=CN,点O、D、E分别是AC、MN、AB的中点.过点E作平行于平面AMNC的截面分别交BD、BC于点F、G,H是FG的中点.
(Ⅰ)证明:OB⊥EH;
(Ⅱ)若直线BH与平面EFG所成的角的正弦值为 ,求二面角D﹣AC﹣H的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且,则 的值(

A. 恒为正数 B. 恒等于零

C. 恒为负数 D. 可能大于零,也可能小于零

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 平面 分别为的中点, 为侧棱上的动点.

)求证:平面平面

)若为线段的中点,求证: 平面

)试判断直线与平面是否能够垂直.若能垂直,求的值,若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣2|+|x﹣a|,x∈R.
(Ⅰ)求证:当a=﹣1时,不等式lnf(x)>1成立;
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类似于十进制中的逢10进1,十二进制的进位原则是逢12进1,采用数字0,1,2,…,9和字母M,N作为计数符号,这些符号与十进制的数字对应关系如下表:

十二进制

0

1

2

3

4

5

6

7

8

9

M

N

十进制

0

1

2

3

4

5

6

7

8

9

10

11

例如,因为563=3×122+10×12+11,所以十进制中的563在十二进制中被表示为3MN(12).那么十进制中的2008在十二进制中被表示为(  )

A. 11N4(12) B. 1N25(12) C. 12N4(12) D. 1N24(12)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的左顶点为(﹣2,0),离心率为

(1)求椭圆C的方程;
(2)已知直线l过点S(4,0),与椭圆C交于P,Q两点,点P关于x轴的对称点为P′,P′与Q两点的连线交x轴于点T,当△PQT的面积最大时,求直线l的方程.

查看答案和解析>>

同步练习册答案