精英家教网 > 高中数学 > 题目详情
如图所示,已知正方形和矩形所在的平面互相垂直, 是线段的中点。

(1)证明:∥平面
(2)求异面直线所成的角的余弦值。
(1)建立空间直角坐标系,用坐标表示点与向量,证明CM与平面BDF的法向量垂直,即可证得结论;
(2)

试题分析:(1)证明:建立如图所示的空间直角坐标系,则…(2分)
设平面DBF的一个法向量为,则


得平面DBF的一个法向量为,…(6分)
因为
所以
又因为直线CM?平面DBF内,所以CM∥平面BDF.…(6分)
(2)结合上一问可知求异面直线所成的角的余弦值,只要确定出向量AM和向量DE的坐标即可,结合平面向量的夹角公式来得到为
点评:本题考查线面平行,考查面面角,解题的关键是建立空间直角坐标系,用坐标表示点与向量,利用向量的数量积求解
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

是空间三条不同的直线,是空间中不同的平面,则下列命题中不正确的是(   )
A.若,则
B.若,则
C.当内的射影,若,则
D.当时,若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的两条直线,是不同的两个平面,分析下列命题,其中正确的是(    ).
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为圆的直径,点在圆上,,矩形所在的平面和圆所在的平面互相垂直,且.

(1)求证:平面
(2)设的中点为,求证:平面
(3)设平面将几何体分成的两个锥体的体积分别为,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=,D为AA1中点,BD与AB1交于点O,CO丄侧面ABB1A1.

(Ⅰ)证明:BC丄AB1
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在棱长为2的正方体中,点E,F分别是棱AB,BC的中点,则点到平面的距离等于( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱锥中,底面是边长为2的正方形,侧棱,的中点,是侧棱上的一动点。

(1)证明:
(2)当直线时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是正方体的平面展开图,在这个正方体中,①平面;②平面;③平面平面;④平面平面.以上四个命题中,正确命题的序号是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科)(本小题满分12分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.

(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

同步练习册答案