精英家教网 > 高中数学 > 题目详情
如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2
(Ⅰ)求该椭圆的标准方程.
(Ⅱ)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.
解:(Ⅰ)由e===2
求得a=2,c=
∴b==
∴椭圆的方程为:
(Ⅱ)设P(x,y),M(x1,y1),N(x2,y2),
则由,得(x,y)=(x1,y1)+2(x2,y2),
即x=x1+2x2,y=y1+2y2
∵点M,N在椭圆上,所以
故x2+2y2=(x12+4x22+4x1x2)+2(y12+4y22+4y1y2)=20+4(x1x2+2y1y2
设k0M,kON分别为直线OM,ON的斜率,
根据题意可知k0MkON=﹣
∴x1x2+2y1y2=0
∴x2+2y2=20
所以P在椭圆
设该椭圆的左,右焦点为F1,F2
由椭圆的定义可推断出|PF1|+|PF2|为定值,
因为c=,则这两个焦点坐标是(﹣,0)(,0)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,椭圆的中心为原点O,离心率e=
2
2
,一条准线的方程为x=2
2

(Ⅰ)求该椭圆的标准方程.
(Ⅱ)设动点P满足
OP
=
OM
+2
ON
,其中M,N是椭圆上的点.直线OM与ON的斜率之积为-
1
2

问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆的中心为原点O,已知右准线l的方程为x=4,右焦点F到它的距离为2.
(1)求椭圆的标准方程;
(2)设圆C经过点F,且被直线l截得的弦长为4,求使OC长最小时圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率e=
2
2
,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率e=
2
2
,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源:2014届河南安阳一中高二第一次阶段测试数学试卷(奥数班)(解析版) 题型:解答题

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为,线段的中点分别为,且△ 是面积为4的直角三角形.

(Ⅰ)求该椭圆的离心率和标准方程;

(Ⅱ)过做直线交椭圆于P,Q两点,使,求直线的方程.

 

查看答案和解析>>

同步练习册答案