【题目】已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.
【答案】(1)当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(lna,+∞).(2)(-∞,0].
【解析】试题分析:(1),根据其导函数的解即的情况讨论的符号,即得其单调区间;(2)若在定义域内单调递增,则恒成立,所以恒成立,即即得的取值范围.
试题解析:(1)∵f(x)=ex-ax-1(x∈R),∴f′(x)=ex-a.令f′(x)≥0,得ex≥a.当a≤0时,f′(x)>0在R上恒成立;当a>0时,有x≥ln a.综上,当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).
(2)由(1)知f′(x)=ex-a.∵f(x)在R上单调递增,
∴f′(x)=ex-a≥0恒成立,即a≤ex在R上恒成立.
∵x∈R时,ex>0,∴a≤0,
即a的取值范围是(-∞,0].
科目:高中数学 来源: 题型:
【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史,某陶瓷厂在生产过程中,对仿制的100件工艺品测得其重量(单位: )数据,将数据分组如下表:
(1)在答题卡上完成频率分布表;
(2)以表中的频率作为概率,估计重量落在中的概率及重量小于2.45的概率是多少?
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是2.25作为代表.据此,估计这100个数据的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市甲水厂每天生产万吨的生活用水,其每天固定生产成本为万元,居民用水的税费价格为每吨元,该市居民每天用水需求量是在(单位:万吨)内的随机数,经市场调查,该市每天用水需求量的频率分布直方图如图所示,设(单位:万吨, )表示该市一天用水需求量(单位:万元)表示甲水厂一天销售生活用水的利润(利润=税费收入-固定生产成本),注:当该市用水需求量超过万吨时,超过的部分居民可以用其他水厂生产的水,甲水厂只收成本厂供应的税费,该市每天用水需求量的概率用频率估计.
(1)求的值,并直接写出表达式;
(2)求甲水厂每天的利润不少于万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个关于圆锥曲线的命题:
①设A,B是两个定点,k为非零常数,若|PA|-|PB|=k,则P的轨迹是双曲线;
②过定圆C上一定点A作圆的弦AB,O为原点,若.则动点P的轨迹是椭圆;
③方程的两根可以分别作为椭圆和双曲线的离心率;
④双曲线与椭圆有相同的焦点.
其中正确命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是直角梯形的四棱锥S-ABCD中,面.
(1)求四棱锥S-ABCD的体积;
(2)求证:面
(3)求SC与底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年1月8日,中共中央国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值y与这种新材料的含量x(单位:克)的关系为:当时,y是x的二次函数;当时,测得数据如下表(部分):
x(单位:克) | 0 | 1 | 2 | 9 | … |
y | 0 | 3 | … |
(1)求y关于x的函数关系式;
(2)当该产品中的新材料含量x为何值时,产品的性能指标值最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:①在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率, 越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;④对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度越大.其中正确命题的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com