【题目】如图,在直三棱柱中,点M,N分别为线段,的中点,,,.
(1)证明:;
(2)求平面与平面所成锐二面角的大小.
【答案】(1)证明见解析;(2).
【解析】
(1)取线段的中点 ,连接,.通过说明,即平面,来说明。
(2)以点C为坐标原点,,,所在直线分别为轴、轴、轴建立空间直角坐标系,由题意知为平面的法向量,计算出平面的法向量,再利用公式即可计算出平面与平面所成锐二面角。
(1)证明:如图,取线段的中点 ,连接,.
∵,,∴.
在直三棱柱中,,
∴.
∵,,∴.
∵,∴.
∵,平面,平面,∴平面.
∵平面,∴.
(2)解:如图,以点C为坐标原点,,,所在直线分别为轴、轴、轴建立如图所示空间直角坐标系,
则,,,,,,.
∵,,∴.∵.∴平面,
故为平面的一个法向量.
设平面的法向量为,由,,
则所以取,则.
可得,又,,∴.
故平面与平面所成锐二面角的大小为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点作轴的垂线交于点.
⑴求椭圆的标准方程;
⑵当直线的斜率为时,求的面积;
⑶试比较与大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记抛物线的焦点为,点在抛物线上,,斜率为的直线与抛物线交于两点.
(1)求的最小值;
(2)若,直线的斜率都存在,且;探究:直线是否过定点,若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y轴右侧部分的边界为一个半圆.给出以下命题:
①在太极图中随机取一点,此点取自黑色阴影部分的概率是;
②当时,直线与黑色阴影部分有公共点;
③当时,直线与黑色阴影部分有两个公共点.
其中所有正确结论的序号是()
A.①B.②C.③D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com