精英家教网 > 高中数学 > 题目详情
14.已知点A(2,1),B(-3,2),在x轴上一点P,使|PA|+|PB|最小,则点P的坐标为($\frac{1}{3}$,0).

分析 求出点A关于x轴的对称点A′,连接A′B与x轴交于点P,则P点即为所求,再根据点P在x轴上的位置得出P点坐标即可.

解答 解:∵A(2,1),
∴点A关于x轴的对称点A′(2,-1),
设直线A′B的解析式为y=kx+b,
∴$\left\{\begin{array}{l}{-1=2k+b}\\{2=-3k+b}\end{array}\right.$,
解得k=-$\frac{3}{5}$,b=$\frac{1}{5}$,
∴直线A′B的解析式为y=-$\frac{3}{5}$x+$\frac{1}{5}$,
令y=0,解得,x=$\frac{1}{3}$,
∴P($\frac{1}{3}$,0).
故答案为:($\frac{1}{3}$,0).

点评 本题考查的是轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图所示,在四边形ABCD中,$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,对角线AC与BD交于点O,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,用$\overrightarrow{a}$和$\overrightarrow{b}$表示$\overrightarrow{AB}$和$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P(0,-1)在角α的终边上,则所有角α组成的集合S={α|α=$\frac{3π}{2}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.${log}_{\frac{1}{3}}$29∈(k,k+1),k∈Z,则k=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x+2)=-f(x),当x∈[4,6]时f(x)=2x-1,求f(x)在[0,2]上的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若直线ax+by+c=0经过一、三、四象限,则有(  )
A.ab>0,bc>0B.ab>0,bc<0C.ab<0,bc>0D.ab<0,bc<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在直棱柱(侧棱垂直于底面)ABC-A1B1C1中,点D为BC的中点,BC=4,AB=AC=$\sqrt{7}$,AA1=3,则三棱锥C1-AB1D的高为(  )
A.$\sqrt{3}$B.$\frac{6\sqrt{13}}{13}$C.$\frac{12\sqrt{13}}{13}$D.$\frac{\sqrt{39}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若x≥1,a=($\frac{1}{3}$)${\;}^{{x}^{2}+1}$,b=($\frac{1}{3}$)x+1,c=($\frac{1}{3}$)2x,则下列关系中正确的是(  )
A.lga≥lgb≥1gcB.lgb≥lgc≥lgaC.lgb≥lga≥lgcD.1gc≥1ga≥lgb

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\frac{4x-6}{x-1}$的定义域和值域都是[2,b](b>2),则实数b的值为3.

查看答案和解析>>

同步练习册答案