精英家教网 > 高中数学 > 题目详情
设向量
a
=(cosα, sinα)
b
=(cosβ, sinβ)
,其中0<α<β<π,若|2
a
+
b
|=|
a
-2
b
|
,则β-α=
 
分析:利用向量模的坐标公式求出两个向量的模,利用向量的数量积公式求出
a
b
;利用向量模的平方等于向量的平方列出方程求出
a
b
,求出两个角的差.
解答:解:∵
a
=(cosα, sinα)
b
=(cosβ, sinβ)

|
a
|=1,|
b
|=1
a
b
=cosαcosβ+sinαsinβ
=cos(β-α)
|2
a
+
b
|=|
a
-2
b
|

4
a
2
+4
a
b
+
b
2
=
a
2
-4
a
b
+4
b
2

a
b
=0

即cos(β-α)=0;
又有0<α<β<π,
β-α=
π
2

故答案为
π
2
点评:本题考查向量模的坐标公式、向量的数量积公式、向量模的平方等于向量的平方.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(cosα,
2
2
)
的模为
3
2
,则cos2α=(  )
A、-
1
4
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(cosα,-1)
b
=(2,sinα),若
a
b
,则tan(α-
π
4
)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(cosα,
1
2
)
的模为
2
2
,则cos2α=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)设向量
a
=(cosθ,1),
b
=(1,3cosθ)
,且
a
b
,则cos2θ=
-
1
3
-
1
3

查看答案和解析>>

同步练习册答案