精英家教网 > 高中数学 > 题目详情
己知椭圆的离心率为是椭圆的左右顶点,是椭圆的上下顶点,四边形的面积为.
(1)求椭圆的方程;
(2)圆两点.当圆心与原点的距离最小时,求圆的方程.
(1)  (2)

试题分析:解:(1)依题意有: ①            2分
四边形是以椭圆的四顶点为顶点的菱形
可得: ②               4分
由①、②解得:所以椭圆的方程为:        6分
(2)依题意得
可得的垂直平分线的方程为: ③       8分
圆心上,当圆心与原点的距离最小时,
可得的方程为 ④                         10分
联立③、④得,即         12分
由此可得  ,
所以圆的方程为:    14分
点评:解决的关键是利用椭圆的几何性质来得到其方程,同时能借助于直线与圆的关系来得到圆的方程,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

椭圆上的任意一点(除短轴端点除外)与短轴两个端点的连线交轴于点,则的最小值是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角坐标系中,一直角三角形,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.

⑴ 求双曲线的方程;
⑵ 若一过点为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为
则它的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线与椭圆交于两点,已知
,若且椭圆的离心率,又椭圆经过点
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点为半焦距),求直线的斜率的值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆上的一点P,到椭圆一个焦点的距离为3,则P到另一焦点距离为(    )
A.2B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程+=1({1,2,3,4,…,2013})的曲线中,所有圆面积的和等于       ,离心率最小的椭圆方程为                      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,椭圆C1: ="1" (a>b>0)的左、右焦点分别为F1、F2, F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若·=0,求直线l的方程.

查看答案和解析>>

同步练习册答案