精英家教网 > 高中数学 > 题目详情

在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=AB1,BN=BC1,则下列结论:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,

正确命题的个数是(  )

     A.1             B.2             C.3               D.4

 

【答案】

B

【解析】解;在正方体ABCD-A1B1C1D1的四条棱A1A,B1B,C1C,D1D上分别取点G,F,E,H四点,

使AG= A1A,BF=B1B,CE=C1C,DH= D1D,连接GF,FE,EH,HG,

∵点M、N分别在AB1、BC1上,且AM=AB1,BN= BC1

∴M在线段GF上,N点在线段FE上.且四边形GFEH为正方形,平面GFEH∥平面A1B1C1D1

∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,∵MN⊂平面GFEH,∴AA1⊥MN,∴①正确.

∵A1C1∥GE,而GE与MN不平行,∴A1C1与MN不平行,∴②错误.

∵平面GFEH∥平面A1B1C1D1,MN⊂平面GFEH,∴MN∥平面A1B1C1D1,∴③正确.

∵B1D1⊥FH,FH⊂平面GFEH,MN⊂平面GFEH,B1D1⊂平面A1B1C1D1,平面GFEH∥平面A1B1C1D1

且MN与FH不平行,∴B1D1不可能垂直于MN,∴④错误

∴正确命题只有①③

故选B

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案