精英家教网 > 高中数学 > 题目详情

【题目】对于空间中的三条直线,有以下四个条件:①三条直线两两相交;②三条直线两两平行;③三条直线共点;④两直线相交,第三条平行于其中一条与另一条相交.其中使这三条直线共面的充分条件有______(填正确结论的序号).

【答案】

【解析】

借助正方体模型进行判断.:①三条直线两两相交共点时不一定共面;②三条直线两两平行可构成三个平面;③三条直线共点不一定共面;④满足平面公理的推论

①中三条直线两两相交共点时,三直线不一定共面,如图中相交共点时,三直线不共面,排除;

②中三条直线两两平行,可能构成三个平面,如图中两两平行时,构成三个平面 平面 ,平面,排除;

③中三条直线共点,三直线不一定共面,如图中相交共点时,三直线不共面,排除;

④中已知直线 ,求证:直线 共面

证明如下:

由平面公理推论知确定平面

所以确定平面

所以 相交

故正确

故答案为:④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆过定点,且在轴上截得的弦长,设动圆圆心的轨迹为曲线

1)求曲线的方程;

2)过点作直线交曲线两点,问在曲线上是否存在一点,使得点在以为直径的圆上?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线处的切线方程;

2)若不等式对任意恒成立,求正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为连续10天,每天新增疑似病例不超过7”.过去10日,ABCD四地新增疑似病例数据信息如下:

A地:中位数为2,极差为5 B地:总体平均数为2,众数为2

C地:总体平均数为1,总体方差大于0 D地:总体平均数为2,总体方差为3.

则以上四地中,一定符合没有发生大规模群体感染标志的是_______(ABCD)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点为圆上一动点,过点分别作轴,轴的垂线,垂足分别为,连接延长至点,使得,点的轨迹记为曲线.

1)求曲线的方程;

2)若点分别位于轴与轴的正半轴上,直线与曲线相交于两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,讨论函数的单调性;

(Ⅱ)若方程没有实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为直角梯形,的中点.

(Ⅰ)证明:∥平面

(Ⅱ)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了调查小区成年居民对环境治理情况的满意度(满分按100计),随机对20名六十岁以上的老人和20名十八岁以上六十岁以下的中青年进行了不记名的问卷调查,得到了如下统计结果:

1:六十岁以上的老人对环境治理情况的满意度与频数分布表

满意度

人数

1

5

6

5

3

2:十八岁以上六十岁以下的中青年人对环境治理情况的满意度与频数分布表

满意度

人数

2

4

8

4

2

3

满意度小于80

满意度不小于80

合计

六十岁以上老人人数

十八岁以上六十岁以下的中青年人人数

合计

1)若该小区共有中青年人500人,试估计其中满意度不少于80的人数;

2)完成表3列联表,并回答能否有的把握认为小区成年居民对环境治理情况的满意度与年龄有关

3)从表3的六十岁以上的老人满意度小于80”满意度不小于80”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取3人,求至少有两人满意小于80的概率.

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(其中mn为常数)

1)当时,对恒成立,求实数n的取值范围;

2)若曲线处的切线方程为,函数的零点为,求所有满足的整数k的和.

查看答案和解析>>

同步练习册答案