精英家教网 > 高中数学 > 题目详情

【题目】将两颗正方体型骰子投掷一次,则向上的点数之和是的概率为_____,向上的点数之和不小于的概率为_____.

【答案】

【解析】

(1)利用古典概型的概率公式求解;(2)求出所有的基本事件和向上的点数之和不小于的基本事件的数量,再利用古典概型的概率公式即得解.

1)将两颗正方体型骰子投掷一次,共有6×6=36个结果,其中向上的点数之和是10的基本事件有(4,6),(5,5),(6,4),共3种,由古典概型的概率公式得向上的点数之和是的概率为.

(2) 将两颗正方体型骰子投掷一次,共有6×6=36个结果,其中向上的点数之和不小于10的基本事件有(4,6),(5,5),(6,4),(5,6),(6,5),(6,6),共6种,由古典概型的概率公式得向上的点数之和不小于的概率为.

故答案为:(1). (2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M(1),过点P(2,1)的直线l与椭圆C相交于不同的两点AB.

1)求椭圆C的方程;

2)是否存在直线l,满足?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集(,)具有性质P;对任意的i,j(),两数中至少有一个属于A.

(1)分别判断数集是否具有性质P,并说明理由;

(2)证明:,且;

(3)当时,若,求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(a∈R).

(1)若曲线y=f(x)在x=e处切线的斜率为﹣1,求此切线方程;

(2)若f(x)有两个极值点x1,x2,求a的取值范围,并证明:x1x2>x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三有500名学生,在一次考试的英语成绩服从正态分布,数学成绩的频率分布直方图如下:

如果成绩大于135的为特别优秀,则本次考试英语、数学特别优秀的大约各多少人?

Ⅱ)试问本次考试英语和数学的成绩哪个较高,并说明理由.

Ⅲ)如果英语和数学两科都特别优秀的共有6人,从(Ⅰ)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有人,求的分布列和数学期望。

参考公式及数据:

,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)关于的方程恰有三个不相等的实数根,求实数的值.

(2)关于的方程上恰有两个不等实数根,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数且)在处取得极值.

(1)当时,求的极大值点和极小值点;

(2)若上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数都是定义在集合上的函数,对于任意的,都有成立,称函数上互为互换函数

1)函数上互为互换函数,求集合

2)若函数 )与在集合上互为互换函数,求证:

3)函数在集合上互为互换函数,当,,且上是偶函数,求函数在集合上的解析式.

查看答案和解析>>

同步练习册答案