精英家教网 > 高中数学 > 题目详情
定义域为R的偶函数f(x)满足?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18.若函数y=f(x)-loga(x+1)至少有三个零点,则a的取值范围是(  )
A、(0,
2
2
B、(0,
3
3
C、(0,
5
5
D、(0,
6
6
分析:令x=-1,求出f(1),可得函数f(x)的周期为2,当x∈[2,3]时,f(x)=-2x2+12x-18,画出图形,根据函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,利用数形结合的方法进行求解.
解答:精英家教网解:∵f(x+2)=f(x)-f(1),且f(x)是定义域
为R的偶函数,
令x=-1可得f(-1+2)=f(-1)-f(1),
f(-1)=f(1),
即 f(1)=0 则有,f(x+2)=f(x),
∴f(x)是周期为2的偶函数.
当x∈[2,3]时,f(x)=-2x2+12x-18=-2(x-3)2
函数的图象为开口向下、顶点为(3,0)的抛物线.
∵函数y=f(x)-loga(|x|+1)在(0,+∞)上
至少有三个零点,
令g(x)=loga(|x|+1),则f(x)的图象和g(x)的图象至少有3个交点.
∵f(x)≤0,∴g(x)≤0,可得a<1.
要使函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,
则有g(2)>f(2),可得 loga(2+1)>f(2)=-2,
∴loga3>-2,∴3<
1
a2
,解得-
3
3
<a<
3
3

又a>0,∴0<a<
3
3

故选:B.
点评:此题主要考查函数周期性及其应用,解题的过程中用到了数形结合的方法,这也是高考常考的热点问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的偶函数f(x)在[0,+∞)上是增函数,且f(
1
2
)=0
,则不等式f(log4x)>0的解集是
(  )
A、x|x>2
B、{x|0<x<
1
2
}
C、{x|0<x<
1
2
或x>2}
D、{x|
1
2
<x<1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对?∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若方程f(x)=loga(x+1)在(0,+∞)上恰有三个不同的根,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至多三个零点,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的偶函数f(x)在(0,+∞)上是增函数,且f(
1
2
)=0,则不等式f(log2x)>0的解是
(0,
2
2
)∪(
2
,+∞)
(0,
2
2
)∪(
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(
12
)=2,则不等式f(2x)>2的解集为
(-1,+∞)
(-1,+∞)

查看答案和解析>>

同步练习册答案