【题目】已知为等差数列,且,.
(1)求的通项公式;
(2)若等比数列满足,,求的前项和公式.
科目:高中数学 来源: 题型:
【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为元,实验30天共投入实验费用17700元.
(1)求的值及平均每天耗资最少时实验的天数;
(2)现有某知名企业对该项实验进行赞助,实验天共赞助元.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为贯彻落实教育部等6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,普及足球知识和技能,市教体局决定矩形春季校园足球联赛,为迎接此次联赛,甲同学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录如下表:
身高() | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
人数 | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
(1)请计算这20名学生的身高中位数、众数,并补充完成下面的茎叶图;
(2)身高为185和188的四名学生分别为,,,,先从这四名学生中选2名担任正副门将,请利用列举法列出所有可能情况,并求学生入选正门将的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为了了解高一新生男生得到体能状况,从高一新生中抽取若干名男生进行铅球测试,把所得数据(精确到0.1米)进行整理后,分成6组画出频率分布直方图的一部分(如下图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(1)请将频率分布直方图补充完整;
(2)该校参加这次铅球测试的男生有多少人?
(3)若成绩在8.0米以上(含8.0米)的为合格,试求这次铅球测试的成绩的合格率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记表示中的最大值,如,已知函数.
(1)求函数在上的值域;
(2)试探讨是否存在实数, 使得对恒成立?若存在,求的取值范围;
若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的直角坐标方程;
(2)已知直线与轴的交点为,与曲线的交点为, ,若的中点为,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com