精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

【答案】(1);(2)存在,且方程为.

【解析】

(1)依题意列出关于a,b,c的方程组,求得a,b,进而可得到椭圆方程;(2)联立直线和椭圆得到要使以为直径的圆过椭圆的左顶点,则结合韦达定理可得到参数值.

(1)直线的一般方程为.

依题意,解得,故椭圆的方程式为.

(2)假若存在这样的直线

当斜率不存在时,以为直径的圆显然不经过椭圆的左顶点,

所以可设直线的斜率为,则直线的方程为.

,得.

,得.

的坐标分别为

.

要使以为直径的圆过椭圆的左顶点,则

所以

整理解得

所以存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,某城镇由6条东西方向的街道和7条南北方向的街道组成,其中有一个池塘,街道在此变成一个菱形的环池大道.现要从城镇的A处走到B处,使所走的路程最短,最多可以有种不同的走法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|
(Ⅰ)解不等式f(2x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,a≠0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B分别为椭圆C: + =1(a>b>0)在x轴正半轴,y轴正半轴上的顶点,原点O到直线AB的距离为 ,且|AB|=
(1)求椭圆C的离心率;
(2)直线l:y=kx+m(﹣1≤k≤2)与圆x2+y2=2相切,并与椭圆C交于M,N两点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和是Sn , 则下列四个命题中,错误的是(
A.若数列{an}是公差为d的等差数列,则数列{ }的公差为 的等差数列
B.若数列{ }是公差为d的等差数列,则数列{an}是公差为2d的等差数列
C.若数列{an}是等差数列,则数列的奇数项,偶数项分别构成等差数列
D.若数列{an}的奇数项,偶数项分别构成公差相等的等差数列,则{an}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是世界读书日,为提高学生对读书的重视,让更多的人畅游于书海中,从而收获更多的知识,某高中的校学生会开展了主题为“让阅读成为习惯,让思考伴随人生”的实践活动,校学生会实践部的同学随即抽查了学校的40名高一学生,通过调查它们是喜爱读纸质书还是喜爱读电子书,来了解在校高一学生的读书习惯,得到如表列联表:

喜欢读纸质书

不喜欢读纸质书

合计

16

4

20

8

12

20

合计

24

16

40

(Ⅰ)根据如表,能否有99%的把握认为是否喜欢读纸质书籍与性别有关系?
(Ⅱ)从被抽查的16名不喜欢读纸质书籍的学生中随机抽取2名学生,求抽到男生人数ξ的分布列及其数学期望E(ξ).
参考公式:K2= ,其中n=a+b+c+d.
下列的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案