【题目】某学校900名学生在一次百米测试中,成绩全部介于13秒与18 秒之间,利用分层抽样的方法抽取其中若干个样本,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],有关数据见下表:
各组组员数 | 各组抽取人数 | |
[13,14) | 54 | a |
[14,15) | b | 8 |
[15,16) | 342 | 19 |
[16,17) | 288 | c |
[17,18] | d |
(1)求a,b,c,d的值;
(2)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽一个同学组成一个新的组,求这个新组恰好由一个男生和一个女生构成的概率。
【答案】(1)的值分别为(2)
【解析】
(1)利用频率表中的概率之和为1,利用频数除以频率等于样本容量求出的值即可;
(2)列举出所有的基本事件,再找到满足条件的基本事件,根据概率公式计算即可;
解:(1)因为,所以每个学生被抽到的概率都为
故
故的值分别为
(2)样本中第一组共有3人,第五组共有4人。
其中第五组四人记为a、b、c、d,其中a为男生,b、c、d为女生,第一组三人记为1、2、3,其中1、2为男生,3为女生,基本事件列表如下:
a | b | c | d | |
1 | 1a | 1b | 1c | 1d |
2 | 2a | 1b | 2c | 2d |
3 | 3a | 3b | 3c | 3d |
所以基本事件有12个,
恰为一男一女的事件有1b,1c,1d,2b,2c,2d,3a共7个,
因此新组恰由一男一女构成的概率是
科目:高中数学 来源: 题型:
【题目】给出下列命题,其中所有正确命题的序号是__________.
①抛物线的准线方程为;
②过点作与抛物线只有一个公共点的直线仅有1条;
③是抛物线上一动点,以为圆心作与抛物线准线相切的圆,则此圆一定过定点.
④抛物线上到直线距离最短的点的坐标为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是指大气中空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世界卫生组织设定的最宽限值,即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某城市环保局从该市市区2017年上半年每天的监测数据中随机抽取18天的数据作为样本,将监测值绘制成茎叶图如下图所示(十位为茎,个位为叶).
(1)求这18个数据中不超标数据的平均数与方差;
(2)在空气质量为一级的数据中,随机抽取2个数据,求其中恰有一个为日均值小于30微克/立方米的数据的概率;
(3)以这天的日均值来估计一年的空气质量情况,则一年(按天计算)中约有多少天的空气质量超标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知右焦点为的椭圆()过点,且椭圆关于
直线对称的图形过坐标原点.
(1)求椭圆的方程;
(2)过点作直线与椭圆交于点 (异于椭圆的左、右顶点),线段的中点为.点是椭圆的右顶点.求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数.
⑴若的定义域为,求实数的取值范围;
⑵当,求函数的最小值;
⑶是否存在实数,使得函数的定义域为,值域为?若存在,求出的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)对任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)<1.
(1)试判断f(x)在R上的单调性,并加以证明;
(2)若f(3)=4,解不等式f(a2+a-5)<2
(3)若关于的不等式在上有解,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com