【题目】如图,三棱柱中,分别为棱的中点.
(1)在上确定点M,使平面,并说明理由。
(2)若侧面侧面,求直线与平面所成角的正弦值。
【答案】(1)答案见解析;(2).
【解析】
(1)取BC中点M,连接AM,则AM∥平面PQB1;利用面面平行证明线面平行即可;
(2)作QO⊥平面ABB1A1,与A1A延长线交于O,作PN∥C1A1,则直线A1C1与平面PQB1所成角即直线PN与平面PQB1所成角,结合几何关系求解直线与平面所成角的正弦值即可.
(1)取BC中点M,连接AM,则AM∥平面PQB1;
如图所示,取BB1中点N,连结AM,AN,
为平行四边形,点N,P为中点,则,由线面平行的判定定理可得平面PQB1,
同理可得,平面PQB1,
据此可得平面AMN∥平面PQB1,故平面.
(2)作QO⊥平面ABB1A1,与A1A延长线交于O,
则,
,
,
,
,
,
.
作PN∥C1A1,则直线A1C1与平面PQB1所成角即直线PN与平面PQB1所成角,
.
设N到平面PQB1的距离为h,则,
∴直线A1C1与平面PQB1所成角的正弦值为:.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为是上一点.
(1)求椭圆的方程;
(2)设是分别关于两坐标轴及坐标原点的对称点,平行于的直线交于异于的两点.点关于原点的对称点为.证明:直线与轴围成的三角形是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,、、,且都有,满足的实数有且只有个,给出下述四个结论:
①满足题目条件的实数有且只有个;②满足题目条件的实数有且只有个;
③在上单调递增;④的取值范围是.
其中所有正确结论的编号是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市房产中心数据研究显示,2018年该市新建住宅销售均价如下表.3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月份开始出台了相关限购政策,10月份开始房价得到了很好的抑制.
均价(万元/) | 0.95 | 0.98 | 1.11 | 1.12 | 1.20 | 1.22 | 1.32 | 1.34 | 1.16 | 1.06 |
月份 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
(Ⅰ)请建立3月至7月线性回归模型(保留小数点后3位),并预测若政府不宏观调控,12月份该市新建住宅销售均价;
(Ⅱ)试用相关系数说明3月至7月各月均价(万元/)与月份之间可用线性回归模型(保留小数点后2位)
参考数据:,,,,
回归方程斜率和截距最小二乘法估计公式;
相关系数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布.
(1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,,其中.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.
附:若随机变量,则;
对于一组数据,其回归线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com