精英家教网 > 高中数学 > 题目详情

【题目】已知和定点,由外一点引切线,切点为,且满足.(1)求实数间满足的等量关系;

(2)求线段长的最小值;

(3)若以为圆心所作的有公共点,试求半径取最小值时的方程.

【答案】(1).(2).(3).

【解析】试题分析:(1由勾股定理可得,化简可得实数间满足的等量关系;2)由于,根据间的等量关系及二次函数的性质即可求出线段长的最小值;3解法一的半径为根据题设条件可得利用二次函数的性质求得的最小值此时求得 取得最小值从而得到圆的方程;解法二:根据的轨迹设出直线有公共点,欲求半径最小,即为外切时半径最小然后可求出半径最小值及垂直直线的方程即可求出此时圆心的坐标故而求出方程.

试题解析:(1)连

为切点, ,由勾股定理有

又由已知,故.即: .

化简得实数间满足的等量关系为: .

2)由,得.

.

故当时, 即线段长的最小值为.

3解法一的半径为

有公共点, 的半径为1

..

故当时, .此时, .

得半径取最小值时的方程为.

解法二:由题意可得的轨迹方程是设为直线

有公共点, 半径最小时为与外切(取小者)的情形,而这些半径的最小值为圆心到直线的距离减去1,圆心为过原点与垂直的直线的交点.

.

解方程组,得,即.

∴所求圆方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方体中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx= ,若f1-x=f1+x),且f0=3.

(Ⅰ)求bc的值;

(Ⅱ)试比较m∈R)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z1 , z2是复数,则下列命题中的假命题是(
A.若|z1﹣z2|=0,则 =
B.若z1= ,则 =z2
C.若|z1|=|z2|,则z1 =z2
D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax+5(a>1).

(1)若f(x)的定义域和值域均是[1,a],求实数a的值;

(2)若f(x)在区间(﹣∞,2]上是减函数,且对任意的x∈[1,a+1],总有f(x)≤0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车.已知每日来回趟数y是每次拖挂车厢节数x的一次函数,如果该列火车每次拖4节车厢,每日能来回16趟;如果每次拖6节车厢,则每日能来回10趟,火车每日每次拖挂车厢的节数是相同的,每节车厢满载时能载客110人.

(1)求出y关于x的函数;

(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上的减函数;

(2)若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);

(3)若为R上的奇函数,则也是R上的奇函数;

(4)t为常数,若对任意的,都有关于对称。

其中所有正确的结论序号为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,g(x)=lnx+ (a>0).
(1)求函数f(x)的极值;
(2)若x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案