精英家教网 > 高中数学 > 题目详情

曲线 (≤θ≤π)的长度是(  )

A.5π                                      B.10π

C.                                     D. 

D


解析:

曲线是圆x2+y2=25的一段圆弧,它所对的圆心角为π- =.所以曲线的长度为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若曲线y=3x2+bx+c在x=x0处切线的倾斜角为450,则点(x0,0)到曲线对称轴的距离是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρ=4sinθ,将其化为直角坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M(x,y)在曲线C上,点M与定点F(1,0)的距离和它到直线m:x=4的距离的比是
12

(1)求曲线C的方程;
(2)点E(-1,0),∠EMF的外角平分线所在直线为l,直线EN垂直于直线l,且交FM的延长线于点N.试求点P(1,8)与点N连线的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)已知点P(0,b)是y轴上的动点,点F(1,0)、M(a,0)满足PM⊥PF,动点N满足2
PN
+
NM
=
0

(1)求动点N所在曲线C的方程.
(2)已知点D(1,2)在曲线C上,若曲线C上两点A、B(都不同于D点)满足DA⊥DB,试证明直线AB必过定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(0,-1),直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.
(1)当m=0时,有∠AOB=
π
3
,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有
OA
OB
为定值T?指出T的值;
(3)设动点P满足
MP
=
OA
+
OB
,当a=-2,m变化时,求点P的轨迹方程;
(4)是否存在常数M,使得对于任意的a∈(0,1),m∈R,都有
OA
OB
<M
恒成立?如果存在,求出的M得最小值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案