精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

讨论函数的单调性;

的两个零点是 ,求证: .

【答案】(Ⅰ)答案见解析;(Ⅱ)证明见解析.

【解析】试题分析:(1)先求函数的定义域,求函数的导数,在定义域内讨论函数的单调性;

(2)求出a=+x1+x2,问题转化为证明lnx1lnx2,即证明ln(*),令=t(0,1),则h(t)=(1+tlnt2t+2,根据函数的单调性证明即可.

试题解析: 函数的定义域为

①当时, ,则上单调递增;

②当时, 时, 时,

上单调递增,在上单调递减.

首先易知,且上单调递增,在上单调递减,

不妨设

构造

上单调递增,

,即

是函数的零点且

均大于,所以,所以,得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我市某矿山企业生产某产品的年固定成本为万元,每生产千件该产品需另投入万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且

(Ⅰ)写出年利润(万元)关于产品年产量(千件)的函数关系式;

(Ⅱ)问:年产量为多少千件时,该企业生产此产品所获年利润最大?

注:年利润=年销售收入-年总成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.

(1)写出直线的直角坐标方程和曲线的普通方程;

(2)求直线与曲线的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为正实数,且 ,若a+b﹣c≥0对于满足条件的a,b恒成立,则c的取值范围为( )
A.
B.(﹣∞,3]
C.(﹣∞,6]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆C: =1,设R(x0 , y0)是椭圆C上的任一点,从原点O向圆R:(x﹣x02+(y﹣y02=8作两条切线,分别交椭圆于点P,Q.

(1)若直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,并记为k1 , k2 , 求证:2k1k2+1=0;
(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

写出曲线的极坐标的方程以及曲线的直角坐标方程;

若过点(极坐标)且倾斜角为的直线与曲线交于 两点,弦的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点高中拟把学校打造成新型示范高中,为此制定了学生“七不准”,“一日三省十问”等新的规章制度.新规章制度实施一段时间后,学校就新规章制度随机抽取部分学生进行问卷调查,调查卷共有10个问题,每个问题10分,调查结束后,按分数分成5组:[50,60),60,70),[70,80),[80,90),[90,100],并作出频率分布直方图与样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x、y的值;
(2)在选取的样本中,从分数在70分以下的学生中随机抽取2名学生进行座谈会,求所抽取的2名学生中恰有一人得分在[50,60)内的概率.

5
6
7
8
9

3 4
1 2 3 4 5 6 7 8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在正实数集上的函数,其中,设两曲线有公共点,且在公共点处的切线相同.

(1)若,求实数的值;

(2)用表示,并求实数的最大值.

查看答案和解析>>

同步练习册答案