精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足:f(1)=
5
2
,对于任意非零实数x,总有f(x)>2.且对于任意实数x、y,总有f(x)f(y)=f(x+y)+f(x-y)成立.
(1)求f(0)的值,并证明f(x)为偶函数;
(2)若数列{an}满足,an=f(n),判断an+1和an的大小关系,并证明你的结论;
(3)设有理数a,b满足|a|<|b|,判断f(a)和f(b)的大小关系,并证明你的结论.
考点:抽象函数及其应用,不等式比较大小
专题:计算题,函数的性质及应用
分析:(1)令x=1,y=0,求出f(0)=2,再令x=0即可判断函数的奇偶性;
(2)由x≠0时,f(x)>2,则f(x+y)+f(x-y)=f(x)f(y)>2f(y),即f(x+y)-f(y)>f(y)-f(x-y),再令x=1,y=n,有f(n+1)-f(n)>f(n)-f(n-1),再由递推,即可得到;
(3)由x≠0时,f(x)>2,则f(x+y)+f(x-y)=f(x)f(y)>2f(y),即f(x+y)-f(y)>f(y)-f(x-y)令y=kx(k为正整数),对任意的k为正整数,有f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x],再由递推即可得到对于k为正整数,总有f[(k+1)x]>f(kx)成立,即有n<m,则有f(nx)<f(mx)成立,可设|a|=
q1
p1
,|b|=
q2
p2
,其中q1,q2是非负整数,p1,p2都是正整数,再由偶函数的结论和前面的结论,即可得到大小.
解答: 解:(1)令x=1,y=0,∴f(1)f(0)=f(1)+f(1),
又f(1)=
5
2
,∴f(0)=2.
令x=0,得f(0)f(y)=f(y)+f(-y),即2f(y)=f(y)+f(-y),
∴f(y)=f(-y)对任意的实数y总成立,
∴f(x)为偶函数;
(2)结论:an<an+1
证明:∵x≠0时,f(x)>2,
∴f(x+y)+f(x-y)=f(x)f(y)>2f(y),
即f(x+y)-f(y)>f(y)-f(x-y)
∴令x=1,y=n,有f(n+1)-f(n)>f(n)-f(n-1),
则f(n+1)-f(n)>f(n)-f(n-1)>f(n-1)-f(n-2)>…>f(1)-f(0)>0.
∴an<an+1
(3)结论:f(a)<f(b).
证明:∵x≠0时,f(x)>2,
∴f(x+y)+f(x-y)=f(x)f(y)>2f(y),即f(x+y)-f(y)>f(y)-f(x-y)
∴令y=kx(k为正整数),对任意的k为正整数,有f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x],
则f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x]>…>f(x)-f(0)>0
∴对于k为正整数,总有f[(k+1)x]>f(kx)成立.
∴对于m,n为正整数,若n<m,则有f(nx)<f[(n-1)x]<…<f(mx)成立.
∵a,b为有理数,所以可设|a|=
q1
p1
,|b|=
q2
p2
,其中q1,q2是非负整数,p1,p2都是正整数,
则|a|=
q1p2
p1p2
,|b|=
p1q2
p1p2
,令x=
1
p1p2
,t=q1p2,s=p1q2,则t,s为正整数.
∵|a|<|b|,∴t<s,∴f(tx)<f(sx),即f(|a|)<f(|b|).
∵函数f(x)为偶函数,∴f(|a|)=f(a),f(|b|)=f(b),
∴f(a)<f(b).
点评:本题考查抽象函数及运用,考查函数的奇偶性和运用,考查解决抽象函数的常用方法:赋值法,考查不等式的证明方法:递推法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.
(Ⅰ)求使用n年后,保养、维修、更换易损零件的累计费用S(千元)关于n的表达式;
(Ⅱ)问这台机器最佳使用年限是多少年?并求出年平均费用(单位:千元)的最小值.(最佳使用年限是指使年平均费用最小的时间,年平均费用=(购入机器费用+运输安装费用+每年投保、动力消耗的费用+保养、维修、更换易损零件的累计费用)÷机器使用的年数 )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ω>0,0<φ<π,直线x=
π
4
和x=
4
是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-x+alnx,其中a≠0.
(1)若a=-6,求f(x)在[1,4]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an}前n项和为Sn,且满足S5=2a4+a5,a9=a3+a4
(1)求数列{an}的通项公式;
(2)若amam+1=am+2,求正整数m的值;
(3)是否存在正整数m,使得
S2m
S2m-1
恰好为数列{an}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的单调区间.
(1)函数f(x)=x+
a
x
(a>0)(x>0);
(2)函数y=
x2+x-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间直角坐标系中,M(1,3,-1),N(4,-2,3),则|MN|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线经过A(0,0),B(0,2)两点,则直线AB的倾斜角为(  )
A、30°B、45°
C、90°D、0°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数m,n,x,y满足m2+n2=1,x2+y2=4,则my+nx的最小值为
 

查看答案和解析>>

同步练习册答案