精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=sin(2014x+ )+cos(2014x﹣ )的最大值为A,若存在实数x1 , x2 , 使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1﹣x2|的最小值为(
A.
B.
C.
D.

【答案】A
【解析】解:∵f(x)=sin(2014x+ )+cos(2014x﹣ )= sin2014x+ cos2014x+ cos2014x+ sin2014x
= sin2014x+cos2014x
=2sin(2014x+ ),
∴A=f(x)max=2,周期T= =
又存在实数x1 , x2 , 对任意实数x总有f(x1)≤f(x)≤f(x2)成立,
∴f(x2)=f(x)max=2,f(x1)=f(x)min=﹣2,
|x1﹣x2|的最小值为 T= ,又A=2,
∴A|x1﹣x2|的最小值为
故选:A.
【考点精析】关于本题考查的三角函数的最值,需要了解函数,当时,取得最小值为;当时,取得最大值为,则才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣b)lnx+x2在区间[1,e]上单调递增,则实数b的取值范围是(
A.(﹣∞,﹣3]
B.(﹣∞,2e]
C.(﹣∞,3]
D.(﹣∞,2e2+2e]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点 ,且与 的交于

(1) 表示 的横坐标;

(2)设以 为焦点,过点 且开口向左的抛物线的顶点坐标为 ,求实数

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣alnx,其中a>0,x>0,e是自然对数的底数. (Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数g(x)= ,证明:0<g(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1+tan20°)(1+tan21°)(1+tan24°)(1+tan25°)的值是(
A.2
B.4
C.8
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”,已知函数f(x)=x2(x∈R),g(x)= (x<0),h(x)=2elnx,有下列命题:
①F(x)=f(x)﹣g(x)在 内单调递增;
②f(x)和g(x)之间存在“隔离直线”,且b的最小值为﹣4;
③f(x)和g(x)之间存在“隔离直线”,且k的取值范围是(﹣4,0];
④f(x)和h(x)之间存在唯一的“隔离直线”y=2 x﹣e.
其中真命题的个数为(请填所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 命题“”的否定是“

B. 上恒成立”上恒成立”

C. 命题“已知,若,则”是真命题

D. 命题“若,则函数只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,证明:

(2)若只有一个极值点,求的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=x+sin|x|,x∈[﹣π,π]的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案