精英家教网 > 高中数学 > 题目详情
设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2012(x)=(  )
分析:利用导数的运算法则找出其周期性即可得出.
解答:解:∵f0(x)=sinx,∴f1(x)=f0′(x)=cosx,∴f2(x)=f1′(x)=-sinx,∴f3(x)=-cosx,f4(x)=sinx,…,
∴fn+4(x)=fn(x).
∴f2012(x)=f503×3(x)=f0(x)=sinx.
故选A.
点评:利用导数的运算法则得出其周期性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2010(x)=
-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

设f0(x)=sin(x),f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2013(x)=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f0(x)=sin(x),f1(x)=f0'(x),f2(x)=f1'(x),…,fn+1(x)=fn'(x),n∈N,则f2013(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2010(x)=______.

查看答案和解析>>

科目:高中数学 来源:陕西省月考题 题型:填空题

设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=fn′(x),n∈N,则
f2010(x)=(    )

查看答案和解析>>

同步练习册答案