精英家教网 > 高中数学 > 题目详情
7.奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(100)+f(101)=-1.

分析 根据函数奇偶性的性质求出函数的周期,利用周期性和奇偶性进行转化即可.

解答 解:偶函数f(x)的定义域为R,若f(x+2)为奇函数,
∴f(-x+2)=-f(x+2)=f(x-2),
即-f(x+4)=f(x),
则f(x+4)=-f(x),f(x+8)=-f(x+4)=f(x),
即函数的周期是8的周期函数,
则f(100)=f(4)=-f(0)=0,
f(101)=f(5)=-f(1)=-1,
∴f(100)+f(101)=-1,
故答案为:-1.

点评 本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设A={x|y=$\sqrt{2-x}$},B={y|y=1n(1+x)},则A∩B=(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某校航模小组在一个棱长为n米的正方体房间试飞一种新型模型飞机,为保证模型飞机安全,模型飞机在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为$\frac{8}{27}$,则n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x),x∈R对任意的实数a,b都有f(ab)=f(a)+f(b),且当x>1时,f(x)<0
(1)求f(-1)的值.
(2)求证:函数f(x)在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设向量$\overrightarrow{a}$=(1,2),|$\overrightarrow{b}$|=2$\sqrt{5}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°则$\overrightarrow{a}$•$\overrightarrow{b}$的值为(  )
A.$\sqrt{5}$B.5C.5$\sqrt{5}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.正项等比数列{an}中,a1a3+2a2a3+a1a5=16,则a2+a3的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.考取驾照是一个非常严格的过程,有的人并不能一次性通过,需要进行补考,现在有一张某驾校学员第一次考试结果汇总表:
成绩
性别
合格不合格合计
男性4510
女性30
合计105
(1)完成列联表
(2)根据列联表判断性别与考试成绩是否有关系,如果有关系求出精确地可信度,没关系请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直角△ABC中,∠C=90°,∠B=30°,AB=4,D为AB的中点,沿中线将△ACD折起使得AB=$\sqrt{13}$,则二面角A-CD-B的大小为(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知半圆O:x2+y2=1(y≥0)及点A(2,0),B为半圆周上任意一点,以AB为一边作等边△ABM.设∠AOB=θ,其中0<θ<π.
(Ⅰ)将边AB表示为θ的函数;
(Ⅱ)求四边形OAMB面积的最大值.

查看答案和解析>>

同步练习册答案