精英家教网 > 高中数学 > 题目详情
16.画出下列函数的图象:(1)y=-x2+2|x|+3;  (2)y=|-x2+2x+3|

分析 分别去绝对值,化为分段函数,再画图即可.

解答 解:(1))y=-x2+2|x|+3=$\left\{\begin{array}{l}{-{x}^{2}+2x+3,x≥0}\\{-{x}^{2}-2x+3,x<0}\end{array}\right.$,其图象为:

(2)y=|-x2+2x+3|=$\left\{\begin{array}{l}{{x}^{2}-2x-3,x<-1,或x>3}\\{-{x}^{2}+2x+3,-1≤x≤3}\end{array}\right.$
其图象为:

点评 本题考查了绝对值函数函数图象的画法,关键是化为分段函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是公差不为0的等差数列,a1=$\frac{1}{2}$,数列{bn}是等比数列,且b1=a1,b2=a3,b3=a4,数列{bn}的前n项和为Sn.记点Qn(bn,Sn),n∈Z+
(1)求数列{an},{bn}的通项公式;
(2)证明点Q1,Q2,Q3,…,Qn…在同一条直线l上,并求出直线l的方程;
(3)若△OQnQn+1,(n∈Z+)的面积为An,Tn为数列{An}的前n项和之和,求:$\underset{lim}{n→∞}$An及$\underset{lim}{n→∞}$Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R)的部分图象如图所示.
(Ⅰ)求f(x)的表达式;
(Ⅱ)求函数f($\frac{8}{π}$x+1)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a、b、c分别为角A、B、C的对边,4sin2$\frac{B+C}{2}$-cos2A=$\frac{7}{2}$,求角A的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足:an+1=2an,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)折bn=log2an(neN*),试求数列($\frac{1}{{b}_{n•{b}_{n+1}}}$)的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)的定义域为[-1,2),则f(x-1)的定义域为(  )
A.[-1,2)B.[0,3)C.(0,1]D.[-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A、B、C的对边分别为a、b、c,已知acosC+$\sqrt{3}$asinC=b+2c
(1)求角A;
(2)若向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影为$\frac{33}{14}$,且sinC=$\frac{3\sqrt{3}}{14}$,求b的值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知直线1的方程为2x+y-4=0,点A的坐标为(3,3).
(1)求过点A且与直线l平行的直线m的方程;
(2)若点B到直线1的距离为$\sqrt{5}$,且直线AB与直线l垂直,求点B的坐际.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知各项都为正数的数列{an}的前n项和Sn满足Sn=$\frac{{a}_{n}({a}_{n}+1)}{2}$.数列{bn}满足bn=$\frac{1}{4{{a}^{2}}_{n}-1}$,则数列{bn}的前n项和Tn=$\frac{n}{2n+1}$.

查看答案和解析>>

同步练习册答案