精英家教网 > 高中数学 > 题目详情
数列{an}满足a1=2且对任意的m,n∈N*,都有=an,则a3=________;{an}的前n项和Sn=________.
8 2n+1-2
=an可得=a1,∴a2=22=4.∴a3=a1a2=2×4=8.由=an=am,令m=1,得=a1=2,即数列{an}是公比为2的等比数列,∴Sn=2n+1-2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列满足:,其中.
(1)求证:数列是等比数列;
(2)令,求数列的最大项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列满足.
(1)令,证明:是等比数列;
(2)求的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等比数列首项为,公比为q,求(1)该数列的前n项和
(2)若q≠1,证明数列 不是等比数列

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放最比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量万吨.
(1)从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列,求相邻两年主要污染物排放总量的关系式;
(2)证明:数列是等比数列;
(3)若该市始终不需要采取紧急限排措施,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知均为给定的大于1的自然数.设集合,集合
(1)当时,用列举法表示集合
(2)设,其中证明:若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等比数列{an}满足an>0,n∈N*,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=(  )
A.n(2n-1)B.(n+1)2C.n2D.(n-1)2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,把数列的各项排列成如下的三角形状,

记A(m,n)表示第m行的第n个数,则A(10,12)=(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等比数列{an}中,a1·a2·a3=27,a2+a4=30,则公比q是(  )
A.±3B.±2C.3D.2

查看答案和解析>>

同步练习册答案