精英家教网 > 高中数学 > 题目详情
已知椭圆:,离心率为,焦点的直线交椭圆于两点,且的周长为4.
(Ⅰ)求椭圆方程;
(Ⅱ) 直线与y轴交于点P(0,m)(m0),与椭圆C交于相异两点A,B且.若,求m的取值范围。
(Ⅰ) ;(Ⅱ)

试题分析:(1)设C:(A>b>0),由条件知A-C=,由此能导出C的方程.(Ⅱ)由题意可知λ=3或O点与P点重合.当O点与P点重合时,m=0.当λ=3时,直线l与y轴相交,设l与椭圆C交点为A(x1,y1),B(x2,y2),再由根的判别式和韦达定理进行求解.
试题解析:(1)设C:(A>b>0),设C>0,,由条件知A-C=,∴A=1,b=C=,故C的方程为:;
(Ⅱ)设与椭圆C的交点为A(),B()。将y=kx+m代入
,所以①,
.因为,所以,
消去,所以,
,当时,
所以,由①得,解得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个交点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知AB为半圆的直径,P为半圆上一点,以A、B为焦点且过点P做椭圆,当点P在半圆上移动时,椭圆的离心率有(  )
A.最大值         B.最小值        C.最大值       D.最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知B、C是两个定点,∣BC∣=6,且△ABC的周长等于16,则顶点A的轨迹方程为                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对k∈R,直线y-kx-1=0与椭圆恒有公共点,则实数m的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线
(Ⅰ)求的方程;
(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长是,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,P为椭圆上,则此椭圆离心率的取值范围是                                               (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若方程表示椭圆,则的取值范围是______________.

查看答案和解析>>

同步练习册答案