【题目】如图,椭圆:的左、右焦点分别为,椭圆上一点与两焦点构成的三角形的周长为6,离心率为,
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆于两点,问在轴上是否存在定点,使得为定值?证明你的结论.
【答案】(1)(2)存在定点,使得为定值.
【解析】
(Ⅰ)根据点与两焦点构成的三角形的周长为6,离心率为,结合性质 ,列出关于 、 、的方程组,求出 、,即可得结果;(Ⅱ)设出直线方程,直线方程与椭圆方程联立,消去可得关于的一元二次方程,表示为,利用韦达定理化简可得,令可得结果.
(Ⅰ)由题设得,又,解得,∴.
故椭圆的方程为.
(Ⅱ),当直线的斜率存在时,设此时直线的方程为,
设,,把代入椭圆的方程,消去并整理得,
,则,,
可得.设点,
那么,
若轴上存在定点,使得为定值,则有,解得,
此时,,
当直线的斜率不存在时,此时直线的方程为,把代入椭圆方程解得,
此时,,, ,
综上,在轴上存在定点,使得为定值.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M点为圆心的圆及其上一点.
(1)设圆N与y轴相切,与圆M外切,且圆心在直线上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点且,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是南北方向的一条公路,是北偏东方向的一条公路,某风景区的一段边界为曲线.为方便游客光,拟过曲线上的某点分别修建与公路,垂直的两条道路,,且,的造价分别为5万元百米,40万元百米,建立如图所示的直角坐标系,则曲线符合函数模型,设,修建两条道路,的总造价为万元,题中所涉及的长度单位均为百米.
(1)求解析式;
(2)当为多少时,总造价最低?并求出最低造价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.
(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?
(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列,期望和方差.
附表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,动点P,Q从点出发在单位圆上运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,则P,Q两点在第2019次相遇时,点P的坐标为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com