精英家教网 > 高中数学 > 题目详情

【题目】将集合中的元素作全排列,使得除了最左端的一个数之外,对于其余的每个数,在的左边某个位置上总有一个数与之差的绝对值为1.则满足条件的排列个数为____________.

【答案】128

【解析】

设对于合适条件的某一排列,排在左边的第一个元素为.则在其余七个数中,大于个数必定按递增的顺序排列;而小于个数必定按递降的顺序排列(位置不一定相邻).

事实上,对任意大于的数,设.

排在的左边,则与相差1的另一数就必须排在的左边;同理,与相差1的另一数又必须排在的左边;……则该排列的第二个数不可能与相差1,矛盾.

因此,必定排在 的右边.

同理,小于个数必定按递降的顺序排列.

由于当排在左边的第一个元素确定后,右边还有七个空位,从中任选个位置填写大于的数(其余各位置则填写小于的数),选法种数为;而当位置选定后,填数方法随之唯一确定.

因此,所有排法种数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,在一个周期内的图象如下图所示.

1)求函数的解析式;

2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是上、下底边长分别为26,高为的等腰梯形,将它沿对称轴折叠,使二面角为直二面角.

1)证明:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体中,,的中点.

(1)求证:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,平面DAC的中点.

1)求证:平面

2)求证:平面

3)设E上一点,试确定E的位置使平面平面BDE,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度,为答对该题的人数,为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):

题号

学生编号

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数:

题号

1

2

3

4

5

实测答对人数

实测难度

2)从编号为155人中随机抽取2人,求恰好有1人答对第5题的概率;

3)定义统计量,其中为第题的实测难度,为第题的预估难度(.规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的极值;

2)当时,讨论的单调性;

3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于 的函数

(I)试求函数的单调区间;

(II)若在区间 内有极值,试求a的取值范围;

(III) 时,若有唯一的零点 ,试求 .(注:为取整函数,表示不超过的最大整数,如 ;以下数据供参考:

查看答案和解析>>

同步练习册答案