精英家教网 > 高中数学 > 题目详情

【题目】某校高一、高二年级的全体学生都参加了体质健康测试,测试成绩满分为100分,规定测试成绩在之间为“体质优秀”,在之间为“体质良好”,在之间为“体质合格”,在之间为“体质不合格”现从两个年级中各随机抽取8名学生,测试成绩如下:

学生编号

1

2

3

4

5

6

7

8

高一年级

60

85

55

80

65

90

90

75

高二年级

75

85

65

90

75

60

a

b

其中ab是正整数.

(1)若该校高一年级有200名学生,试估计高一年级“体质优秀”的学生人数;

(2)从高一年级抽取的学生中再随机选取3人,求这3人中,恰有1人“体质良好”的概率;

(3)设两个年级被抽取学生的测试成绩的平均数相等,当高二年被抽取学生的测试成绩的方差最小时,写出ab的值结论不要求证明

【答案】(1)75;(2);(3)

【解析】

(1)由统计表能估计高一年级体质优秀的学生人数.

(2)高一年级被抽取的8名学生中,优质良好的有2人,从高一年级抽取的学生中再随机选取3人,利用古典概型能求出这3人中,恰有1体质良好的概率.

(3)

1该校高一年级有200名学生,

则估计高一年级“体质优秀”的学生人数为:

2高一年级被抽取的8名学生中,“优质良好”的有2人,

从高一年级抽取的学生中再随机选取3人,

3人中,恰有1人“体质良好”的概率

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要条件;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线在点处的切线方程.

)求的单调区间.

)求证:当时,函数存在最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)x2a|x1|1aR

1)判断并证明函数f(x)的奇偶性;

2)若f(x)0x[1,+∞)恒成立,求a的取值范围;

3)写出f(x)[22]上的最大值g(a)(不需要解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,满足.

1)求函数的解析式;

2)若关于的不等式上有解,求实数的取值范围;

3)若函数的两个零点分别在区间内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,右顶点为.

(1)求的方程;

(2)过点且与轴不重合的直线交于两点,直线分别与直线交于两点,且以为直径的圆过点.

(ⅰ)求的方程;

(ⅱ)记的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校早上8:00开始上课,假设该校学生小张与小王都在早上7:30--7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,求小张比小王至少早5分钟到校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

,确定函数的单调区间.

,且对于任意 恒成立,求实数的取值范围.

)求证:不等式对任意正整数恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ab为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与ab都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:

当直线ABa60°角时,ABb30°角;

当直线ABa60°角时,ABb60°角;

直线ABa所成角的最小值为45°;

直线ABa所成角的最大值为60°.

其中正确的是________.(填写所有正确结论的编号)

查看答案和解析>>

同步练习册答案