精英家教网 > 高中数学 > 题目详情

【题目】关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰试验.受其启发,我们也可以通过设计下面的试验来估计的值,试验步骤如下:①先请高二年级 500名同学每人在小卡片上随机写下一个实数对;②若卡片上的能与1构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为;④根据统计数估计的值.假如本次试验的统计结果是,那么可以估计的值约为( )

A. B. C. D.

【答案】A

【解析】分析:500对都小于l的正实数对(x,y)满足,面积为1,两个数能与1构成锐角三角形三边的数对(x,y),满足x2+y21且,x+y>1,面积为1﹣,由此能估计π的值.

详解:由题意,500对都小于l的正实数对(x,y)满足,面积为1,

两个数能与1构成锐角三角形三边的数对(x,y),满足

x2+y2>1,

面积为1﹣

因为统计两数能与l 构成锐角三角形三边的数对(x,y) 的个数m=113,

所以=1﹣,所以π=

故答案为:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1若曲线处的切线方程为,求实数的值;

2,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3若在上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的边长为,将沿对角线折起,使平面平面得到如图所示的三棱锥,若边的中点,分别为上的动点(不包括端点),且,设,则三棱锥的体积取得最大值时,三棱锥的内切球的半径为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线与椭圆在第一线象限的交点为

1)求曲线的方程;

2)在抛物线上任取一点,在点处作抛物线的切线,若椭圆上存在两点关于直线对称,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018126日,甘肃省人民政府办公厅发布《甘肃省关于餐饮业质量安全提升工程的实施意见》,卫生部对16所大学食堂的“进货渠道合格性”和“食品安全”进行量化评估.10分者为“安全食堂”,评分7分以下的为“待改革食堂”.评分在4分以下考虑为“取缔食堂”,所有大学食堂的评分在7~10分之间,以下表格记录了它们的评分情况:

(1)现从16所大学食堂中随机抽取3个,求至多有1个评分不低于9分的概率;

(2)以这16所大学食堂评分数据估计大学食堂的经营性质,若从全国的大学食堂任选3个,记表示抽到评分不低于9分的食堂个数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果有一天我们分居异面直线的两头,那我一定穿越时空的阻隔,画条公垂线向你冲来,一刻也不愿逗留.如图1所示,在梯形中,//,且,分别延长两腰交于点,点为线段上的一点,将沿折起到的位置,使,如图2所示.

(1)求证:

(2)若,四棱锥的体积为,求四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛掷一蓝、一黄两枚质地均匀的正四面体骰子,分别观察底面上的数字.

1)用表格表示试验的所有可能结果;

2)列举下列事件包含的样本点:A=“两个数字相同B=“两个数字之和等于5”C=“蓝色骰子的数字为2”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数).

(Ⅰ)当时,求不等式的解集;

(Ⅱ)求证:,并求等号成立的条件.

查看答案和解析>>

同步练习册答案