精英家教网 > 高中数学 > 题目详情
9.已知集合$A=\{x∈R|y=\frac{1}{{\sqrt{x-1}}}\},B=\{y|y=x+\frac{1}{x},x∈R且x≠0\}$,则(CRB)∩A=(  )
A.(1,+∞)B.[-2,2)C.(-2,2)D.(1,2)

分析 直接求根式不等式得到集合A,然后分类讨论当x>0时,x<0时得到集合B,再求出CRB,则答案可求.

解答 解:由集合A中的函数y=$\frac{1}{\sqrt{x-1}}$,得到x-1>0,即x>1,
∴集合A=(1,+∞).
由集合B中的函数y=x+$\frac{1}{x}$,
当x>0时,x+$\frac{1}{x}$≥2;
当x<0时,-x>0,-(x+$\frac{1}{x}$)=(-x)+(-$\frac{1}{x}$)≥2,此时x+$\frac{1}{x}$≤-2,
综上,集合B=(-∞,-2]∪[2,+∞),又全集为R,
∴CRB=(-2,2),
则(CRB)∩A=(-2,2)∩(1,+∞)=(1,2).
故选:D.

点评 本题考查了交、并、补集的混合运算,考查了不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数f(x)=1-3x,f(a)=-8,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为($\sqrt{2},π$),直线L的极坐标方程为$ρcos(θ-\frac{π}{4})=a$.
(Ⅰ)若点A在直线l上,求直线L的直角坐标方程;
(Ⅱ)圆C的参数方程为$\left\{\begin{array}{l}x=cosα\\ y=2+sinα\end{array}\right.(α为参数)$,若直线L与圆C相交的弦长为$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{1}{2}{x^2}$+xlnx-2x的单调递减区间为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=sin(2x-\frac{π}{6})-4{sin^2}x+2(x∈R)$.
(Ⅰ)若$x∈[{0,\frac{π}{2}}]$,求f(x)的值域;
(Ⅱ)若f(x0)=1,${x_0}∈[{\frac{π}{12},\frac{π}{3}}]$,求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,其左、右焦点分别是F1,F2,过点F1的直线l交椭圆C于E,G两点,且△EGF2的周长为$4\sqrt{2}$.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,且A,B两点都在y轴的右侧,设P为椭圆上一点,且满足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}(O$为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列-1,3,-5,7,…的一个通项公式是(  )
A.an=(-1)n--1(2n+1)B.an=(-1)n-1(2n-1)C.an=(-1)n(2n-1)D.an=(-1)n(2n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若0<x<y<1,0<a<1,则下列不等式正确的是(  )
A.3logax<logay2B.cosax<cosayC.ax<ayD.xa<ya

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={-1,1},则集合A的子集共有(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

同步练习册答案