精英家教网 > 高中数学 > 题目详情
精英家教网若椭圆E1
x2
a
2
1
+
y2
b
2
1
=1
和椭圆E2
x2
a
2
2
+
y2
b
2
2
=1
满足
a2
a1
=
b2
b1
=m
 (m>0)
,则称这两个椭圆相似,m称为其相似比.
(1)求经过点(2,
6
)
,且与椭圆
x2
4
+
y2
2
=1
相似的椭圆方程;
(2)设过原点的一条射线l分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为
x2
32
+
y2
(
3
2
2
)
2
=1
”.请用推广或类比的方法提出类似的一个真命题,并给予证明.
分析:(1)直接根据定义得到有
2
a
=
2
b
4
a2
+
6
b2
=1
解得
a2=16
b2=8
即可得到与椭圆
x2
4
+
y2
2
=1
相似的椭圆方程;
(2)先对射线与y轴重合时求出结论;再对射线不与坐标轴重合时,由椭圆的对称性,仅考查A、B在第一象限的情形,联立直线与两个椭圆方程分别求出线段的长度,再结合函数的单调性即可求出|OA|+
1
|OB|
的最大值和最小值;(整理过程需小心避免出错).
(3)分析出命题的基本条件为:椭圆、a=2,b=
2
、m=2、等差,类比着写:①双曲线或抛物线; ②a,b或p; ③相似比为m;④等比,再加以证明即可.
解答:精英家教网解:(1)设所求的椭圆方程为
x2
a2
+
y2
b2
=1
,则有
2
a
=
2
b
4
a2
+
6
b2
=1
解得
a2=16
b2=8

∴所要求的椭圆方程为
x2
16
+
y2
8
=1

(2)①当射线与y轴重合时,|OA|+
1
|OB|
=
2
+
1
2
2
=
5
2
4

②当射线不与坐标轴重合时,由椭圆的对称性,我们仅考察A、B在第一象限的情形.
设其方程为y=kx(k≥0,x>0),设A(x1,y1),B(x2,y2
y=kx
x2
4
+
y2
2
=1
解得
x
2
1
=
4
1+2k2
y
2
1
=
4k2
1+2k2

|OA|=
2
k2+1
1+2k2

y=kx
x2
16
+
y2
8
=1
解得
x
2
1
=
16
1+2k2
y
2
1
=
16k2
1+2k2

|OB|=
4
k2+1
1+2k2

|OA|+
1
|OB|
=
2
k2+1
1+2k2
+
1+2k2
4
k2+1

t=
2
k2+1
1+2k2
则由t=
2
k2+1
1+2k2
=
4k2+4
1+2k2
=
2+
2
1+2k2
2
<t≤2

|OA|+
1
|OB|
=t+
1
2t

f(t)=t+
1
2t
,则f(t)在(
2
,2]
上是增函数,∴f(
2
)<f(t)≤f(2)

5
4
2
<|OA|+
1
|OB|
9
4

由①②知,|OA|+
1
|OB|
的最大值为
9
4
|OA|+
1
|OB|
的最小值为
5
2
4

(3)本题根据学生提出和解决问题的质量评分
命题结构:条件?结论
条件由四部分组成:
精英家教网
其中基本条件为:椭圆、a=2,b=
2
、m=2、等差,
得分条件为:①双曲线或抛物线; ②a,b或p; ③相似比为m;④等比.
例1:①双曲线+②a,b+③相似比为m+等差
过原点的一条射线分别与两条双曲线C1
x2
a2
-
y2
b2
=1
和C2
x2
(ma)2
-
y2
(mb)2
=1
(m>0)交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为
x2
(
1+m
2
a)
2
-
y2
(
1+m
2
b)
2
=1

证明:∵射线l与双曲线有交点,不妨设其斜率为k,显然|k|<
b
a

设射线l的方程为y=kx,设点A(x1,y1)、B(x2,y2)、p(x,y)
y=kx
x2
a2
-
y2
b2
=1
解得  x1=
ab
b2-a2k2

y=kx
x2
(ma)2
-
y2
(mb)2
=1
解得  x2=
mab
b2-a2k2

由P点在射线l上,且2|OP|=|OA|+|OB|得
x=
x1+x2
2
y=kx
x=
ab(1+m)
2
b2-a2k2
k=
y
x

x2
(
1+m
2
a)
2
-
y2
(
1+m
2
b)
2
=1

例2:①抛物线+②p+③相似比为m+等差
过原点的一条射线分别与两条抛物线C1:y2=2px(p>0)和C2:y2=2mpx(m>0)相交于异于原点的A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为y2=(1+m)px
证明:∵射线l与抛物线有异于原点的交点,不妨设其斜率为k.
设射线l的方程为y=kx,设点A(x1,y1)、B(x2,y2)、p(x,y)
y=kx
y2=2px
解得  x1=
2p
k2

y=kx
y2=2mpx
解得  x2=
2mp
k2

由P点在射线l上,且2|OP|=|OA|+|OB|得
x=
x1+x2
2
y=kx
x=
2p(1+m)
k2
k=
y
x

得 y2=(1+m)px
点评:本题综合考查直线和椭圆的位置关系,难度较大,解题时要仔细审题,注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为2
2
,离心率为e1=
2
2
,椭圆C2与C1有共同的短轴.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)若C2与直线l:x-y+2=0有两个不同的交点,求椭圆的离心率e2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C. 
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E1
x2
10
+
2y2
5
=1
 E2
x2
a2
+
2y2
b2
=1(a>b>0)
.E1与E2有相同的离心率,过点F(-
3
,0
)的直线l与E1,E2依次交于A,C,D,B四点(如图).当直线l过E2的上顶点时,直线l的倾斜角为
π
6

(1)求椭圆E2的方程;
(2)求证:|AC|=|DB|;
(3)若|AC|=1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy(O为坐标原点)中,椭圆E1
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点在圆E2:x2+y2=a+b上,且椭圆的离心率是
3
2

(Ⅰ)求椭圆E1和圆E2的方程;
(Ⅱ)是否存在经过圆E2上的一点P(x0,y0)的直线l,使l与圆E2相切,与椭圆E1有两个不同的交点A、B,且
OA
OB
=3?若存在,求出点P的横坐标x0的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为2
2
,离心率为e1=
2
2
,椭圆C2与C1有共同的短轴.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)若C2与直线l:x-y+2=0有两个不同的交点,求椭圆的离心率e2的取值范围.

查看答案和解析>>

同步练习册答案