精英家教网 > 高中数学 > 题目详情

【题目】下列叙述: ①函数 是奇函数;
②函数 的一条对称轴方程为
③函数 ,则f(x)的值域为
④函数 有最小值,无最大值.
所有正确结论的序号是

【答案】②④
【解析】解:①函数 ,显然f(﹣x)≠f(x),不是奇函数,故错误; ②f(﹣ )=﹣1, 的一条对称轴方程为 ,故正确;
③函数 ,2x+ ,则f(x)的值域为[﹣1, ],故错误;
④函数 ,f(x)≥4,有最小值,无最大值,故正确.
所以答案是②④.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知B=45°,D是BC边上的一点,AD=4,AC=2 ,DC=2
(1)求cos∠ADC
(2)求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+(y﹣2)2=4.
(1)求直线2x﹣y+4=0被圆C所截得的弦长;
(2)求过点M(3,1)的圆C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直棱柱ABC﹣A1B1C1中,AC=BC=CC1= AB,E是线段CC1的中点,连接AE,B1E,AB1 , B1C,BC1 , 得到的图形如图所示. (Ⅰ)证明BC1⊥平面AB1C;
(Ⅱ)求二面角E﹣AB1﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件: ;则z=x﹣2y的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知
(1)求函数f(x)的最小正周期和最大值,并求出x为何值时,f(x)取得最大值;
(2)求函数f(x)在[﹣2π,2π]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若先将函数y= sin(x﹣ )+cos(x﹣ )图象上各点的纵坐标不变,横坐标缩短到原来的 倍,再将所得图象向左平移 个单位,所得函数图象的一条对称轴的方程是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:

t

0

3

6

9

12

15

18

21

24

y

10

13

9.9

7

10

13

10.1

7

10

经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b
(1)根据以上数据,求出y=f(t)的解析式;
(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长都相等的四面体PABC中,DEF分别是ABBCCA的中点,则下面四个结论中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

同步练习册答案