精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.

【答案】
(1)

解:曲线C1的参数方程为 (α为参数),

移项后两边平方可得 +y2=cos2α+sin2α=1,

即有椭圆C1 +y2=1;

曲线C2的极坐标方程为ρsin(θ+ )=2

即有ρ( sinθ+ cosθ)=2

由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,

即有C2的直角坐标方程为直线x+y﹣4=0;


(2)

解:由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,

|PQ|取得最值.

设与直线x+y﹣4=0平行的直线方程为x+y+t=0,

联立 可得4x2+6tx+3t2﹣3=0,

由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,

解得t=±2,

显然t=﹣2时,|PQ|取得最小值,

即有|PQ|= =

此时4x2﹣12x+9=0,解得x=

即为P( ).

另解:设P( cosα,sinα),

由P到直线的距离为d=

=

当sin(α+ )=1时,|PQ|的最小值为

此时可取α= ,即有P( ).


【解析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.
另外:设P( cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a,b满足﹣2≤a≤2,﹣2≤b≤2,则函数y= x3 ax2+bx﹣1有三个单调区间的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣2(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 = ﹣…+(﹣1)n+1 ,求数列{bn}的通项公式;
(3)在(2)的条件下,设cn=2n+λbn , 问是否存在实数λ使得数列{cn}(n∈N*)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 且 是1与an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{ }的前n项和,证明: <Tn<1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,则实数a的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程选讲]

已知曲线C1的极坐标方程为ρ2cos2θ=8,曲线C2的极坐标方程为 ,曲线C1、C2相交于A、B两点.
(Ⅰ)求A、B两点的极坐标;
(Ⅱ)曲线C1与直线 (t为参数)分别相交于M,N两点,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆E: + =1(a>b>0)的左右焦点分别为F1 , F2
(Ⅰ)若椭圆E的长轴长、短轴长、焦距成等差数列,求椭圆E的离心率;
(Ⅱ)若椭圆E过点A(0,﹣2),直线AF1 , AF2与椭圆的另一个交点分别为点B,C,且△ABC的面积为 ,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P﹣ABC的四个顶点都在球O的球面上,已知PA,PB,PC两两垂直,PA=1,PB+PC=4,当三棱锥的体积最大时,球心O到平面ABC的距离是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案